Home > Enterprise >  Replace a column with binned values and return a new DataFrame
Replace a column with binned values and return a new DataFrame

Time:08-13

I have a DataFrame df that has an Age column with continuous variables. I would like to create a new DataFrame new_df, replacing the original continuous variables with categorical variables that I created from binning.

Is there a way to do this?

DataFrame (df):

   Customer_ID  Gender  Age
0   0002-ORFBO  Female   37
1   0003-MKNFE    Male   46
2   0004-TLHLJ    Male   50
3   0011-IGKFF    Male   78
4   0013-EXCHZ  Female   75
5   0013-MHZWF  Female   23
6   0013-SMEOE  Female   67
7   0014-BMAQU    Male   52
8   0015-UOCOJ  Female   68
9   0016-QLJIS  Female   43
10  0017-DINOC    Male   47
11  0017-IUDMW  Female   25
12  0018-NYROU  Female   58
13  0019-EFAEP  Female   32
14  0019-GFNTW  Female   39
15  0020-INWCK  Female   58
16  0020-JDNXP  Female   52
17  0021-IKXGC  Female   72
18  0022-TCJCI    Male   79

My code:

# Ages 0 to 3: Toddler
# Ages 4 to 17: Child
# Ages 18 to 25: Young Adult
# Ages 26 to 64: Adult
# Ages 65 to 99: Elder

pd.cut(df.Age,bins=[0,3,17,25,64,99], labels=['Toddler', 'Child', 'Young Adult', 'Adult', 'Elder'])

CodePudding user response:

I thought you're getting there already, but there is no need to create a new data frame new_df.. only need to create a new column called age_category

df = pd.read_csv('data.csv')
df['age_category'] = pd.cut(df['Age'], bins=[0,3,17,25,64,99], labels=['Toddler', 'Child', 'Young Adult', 'Adult', 'Elder'])
# print(df)
print(df[['Customer ID', 'Gender', 'Age', 'age_category']])

Output

   Customer ID  Gender  Age age_category
0   0002-ORFBO  Female   37        Adult
1   0003-MKNFE    Male   46        Adult
2   0004-TLHLJ    Male   50        Adult
3   0011-IGKFF    Male   78        Elder
4   0013-EXCHZ  Female   75        Elder
5   0013-MHZWF  Female   23  Young Adult
6   0013-SMEOE  Female   67        Elder
7   0014-BMAQU    Male   52        Adult
8   0015-UOCOJ  Female   68        Elder
9   0016-QLJIS  Female   43        Adult
10  0017-DINOC    Male   47        Adult
11  0017-IUDMW  Female   25  Young Adult
12  0018-NYROU  Female   58        Adult
13  0019-EFAEP  Female   32        Adult
14  0019-GFNTW  Female   39        Adult
15  0020-INWCK  Female   58        Adult
16  0020-JDNXP  Female   52        Adult
17  0021-IKXGC  Female   72        Elder
18  0022-TCJCI    Male   79        Elder

CodePudding user response:

If you really want it to be another dataframe, make a copy of the original, and then overwrite the Age column with what you made:

new_df = df.copy()
new_df['Age'] = pd.cut(new_df['Age'], bins=[0,3,17,25,64,99], labels=['Toddler', 'Child', 'Young Adult', 'Adult', 'Elder'])
print(new_df)

# Output:

   Customer_ID  Gender          Age
0   0002-ORFBO  Female        Adult
1   0003-MKNFE    Male        Adult
2   0004-TLHLJ    Male        Adult
3   0011-IGKFF    Male        Elder
4   0013-EXCHZ  Female        Elder
5   0013-MHZWF  Female  Young Adult
6   0013-SMEOE  Female        Elder
7   0014-BMAQU    Male        Adult
8   0015-UOCOJ  Female        Elder
9   0016-QLJIS  Female        Adult
10  0017-DINOC    Male        Adult
11  0017-IUDMW  Female  Young Adult
12  0018-NYROU  Female        Adult
13  0019-EFAEP  Female        Adult
14  0019-GFNTW  Female        Adult
15  0020-INWCK  Female        Adult
16  0020-JDNXP  Female        Adult
17  0021-IKXGC  Female        Elder
18  0022-TCJCI    Male        Elder

CodePudding user response:

You can try add include_lowest argument to make 0 included to Toddler label

out = df.join(pd.cut(df.pop('Age'),
                     bins=[0,3,17,25,64,99],
                     labels=['Toddler', 'Child', 'Young Adult', 'Adult', 'Elder'],
                     include_lowest=True,).to_frame('label'))
print(out)

           label
0            NaN
1        Toddler
2        Toddler
3        Toddler
4        Toddler
5          Child
6          Child
7          Child
8          Child
9          Child
10         Child
11         Child
12         Child
13         Child
14         Child
15         Child
16         Child
17         Child
18         Child
19   Young Adult
20   Young Adult
21   Young Adult
22   Young Adult
23   Young Adult
24   Young Adult
25   Young Adult
26   Young Adult
27         Adult
28         Adult
29         Adult
30         Adult
31         Adult
32         Adult
33         Adult
34         Adult
35         Adult
36         Adult
37         Adult
38         Adult
39         Adult
40         Adult
41         Adult
42         Adult
43         Adult
44         Adult
45         Adult
46         Adult
47         Adult
48         Adult
49         Adult
50         Adult
51         Adult
52         Adult
53         Adult
54         Adult
55         Adult
56         Adult
57         Adult
58         Adult
59         Adult
60         Adult
61         Adult
62         Adult
63         Adult
64         Adult
65         Adult
66         Elder
67         Elder
68         Elder
69         Elder
70         Elder
71         Elder
72         Elder
73         Elder
74         Elder
75         Elder
76         Elder
77         Elder
78         Elder
79         Elder
80         Elder
81         Elder
82         Elder
83         Elder
84         Elder
85         Elder
86         Elder
87         Elder
88         Elder
89         Elder
90         Elder
91         Elder
92         Elder
93         Elder
94         Elder
95         Elder
96         Elder
97         Elder
98         Elder
99         Elder
100        Elder

New column to original df

df['label'] = pd.cut(df['Age'],
                     bins=[0,3,17,25,64,99],
                     labels=['Toddler', 'Child', 'Young Adult', 'Adult', 'Elder'],
                     include_lowest=True)
print(df)

     Age        label
0     -1          NaN
1      0      Toddler
2      1      Toddler
3      2      Toddler
4      3      Toddler
5      4        Child
6      5        Child
7      6        Child
8      7        Child
9      8        Child
10     9        Child
11    10        Child
12    11        Child
13    12        Child
14    13        Child
15    14        Child
16    15        Child
17    16        Child
18    17        Child
19    18  Young Adult
20    19  Young Adult
21    20  Young Adult
22    21  Young Adult
23    22  Young Adult
24    23  Young Adult
25    24  Young Adult
26    25  Young Adult
27    26        Adult
28    27        Adult
29    28        Adult
30    29        Adult
31    30        Adult
32    31        Adult
33    32        Adult
34    33        Adult
35    34        Adult
36    35        Adult
37    36        Adult
38    37        Adult
39    38        Adult
40    39        Adult
41    40        Adult
42    41        Adult
43    42        Adult
44    43        Adult
45    44        Adult
46    45        Adult
47    46        Adult
48    47        Adult
49    48        Adult
50    49        Adult
51    50        Adult
52    51        Adult
53    52        Adult
54    53        Adult
55    54        Adult
56    55        Adult
57    56        Adult
58    57        Adult
59    58        Adult
60    59        Adult
61    60        Adult
62    61        Adult
63    62        Adult
64    63        Adult
65    64        Adult
66    65        Elder
67    66        Elder
68    67        Elder
69    68        Elder
70    69        Elder
71    70        Elder
72    71        Elder
73    72        Elder
74    73        Elder
75    74        Elder
76    75        Elder
77    76        Elder
78    77        Elder
79    78        Elder
80    79        Elder
81    80        Elder
82    81        Elder
83    82        Elder
84    83        Elder
85    84        Elder
86    85        Elder
87    86        Elder
88    87        Elder
89    88        Elder
90    89        Elder
91    90        Elder
92    91        Elder
93    92        Elder
94    93        Elder
95    94        Elder
96    95        Elder
97    96        Elder
98    97        Elder
99    98        Elder
100   99        Elder
  • Related