I have two pandas dataframes:
DF1
index = np.arange('2020-01-01 00:00', '2020-01-01 00:04', dtype='datetime64[m]')
df = np.random.randint(100,500, size=(4,4))
columns =['Open','High','Low','Close']
df = pd.DataFrame(df, index=index, columns = columns)
df.index.name = 'Time'
Open High Low Close
Time
2020-01-01 00:00:00 266 397 177 475
2020-01-01 00:01:00 362 135 456 235
2020-01-01 00:02:00 315 298 296 493
2020-01-01 00:03:00 324 411 198 101
DF2
index = np.arange('2020-01-01 00:02', '2020-01-01 00:05', dtype='datetime64[m]')
df2 = np.random.randint(100,500, size=(3,4))
columns =['Open','High','Low','Close']
df2 = pd.DataFrame(df2, index=index, columns = columns)
df2.index.name = 'Time'
Open High Low Close
Time
2020-01-01 00:02:00 430 394 131 490
2020-01-01 00:03:00 190 211 394 359
2020-01-01 00:04:00 192 291 143 350
I need to merge both dataframes by the index (Time) and replace the column values of DF1 by the column values of DF2.
This is my expected output:
Open High Low Close
Time
2020-01-01 00:00:00 266 397 177 475 ->>>> Correspond to DF1
2020-01-01 00:01:00 362 135 456 235 ->>>> Correspond to DF1
2020-01-01 00:02:00 430 394 131 490 ->>>> Correspond to DF2
2020-01-01 00:03:00 190 211 394 359 ->>>> Correspond to DF2
2020-01-01 00:04:00 192 291 143 350 ->>>> Correspond to DF2
I have try several functions including merge or concat (concat([df1, df2], join="inner")) but with no success. Any help would be very appreciated. Thanks!
CodePudding user response:
Try this:
df2.combine_first(df)
Open High Low Close
Time
2020-01-01 00:00:00 266 397 177 475
2020-01-01 00:01:00 362 135 456 235
2020-01-01 00:02:00 430 394 131 490
2020-01-01 00:03:00 190 211 394 359
2020-01-01 00:04:00 192 291 143 350
Because you mentioned pd.concat
, here is how you could do it with that.
out = pd.concat([df, df2])
out = out[~out.index.duplicated(keep='last')]
print(out)
Open High Low Close
Time
2020-01-01 00:00:00 266 397 177 475
2020-01-01 00:01:00 362 135 456 235
2020-01-01 00:02:00 430 394 131 490
2020-01-01 00:03:00 190 211 394 359
2020-01-01 00:04:00 192 291 143 350