Home > Enterprise >  performance problem, code works but consider takes long time in long list
performance problem, code works but consider takes long time in long list

Time:09-20

Why the following code is consider inefficient and how can I improve it? while the code works, in huge n or big a/b it fails to deliver instant results.

what have I tired? I sorted initially n,a and b but no change in performance.

Objective, find the sum of h-m Note: len(a) always equal to len(b)

n=[1, 5, 3] #//can be with 100K  items
a=set([3,1]) #//can be with 50K  items
b=set([5,7])

h=0
m=0
for ia, ib in zip(a,b):
    if ia in n:
        h =1
    if ib in n:
        m =1

print (h-m)

CodePudding user response:

Since n is a list, and it's huge (100K items), each if WHATEVER in n: is doing O(n) work, involving 100K equality checks.

You basically have your types backwards here; you're using sets for things you iterate (where being a set is saving you little aside from perhaps removing duplicates from your inputs) and using lists for things you membership test (where O(n) containment checks are much more expensive on large lists than O(1) containment checks are for sets of any size).

Assuming the elements of n are hashable, convert them to a set before the loop and use containment tests against the set:

n=[1, 5, 3] #can be with 100K  items
nset = set(n)   # Cache set view of n
a=set([3,1]) #can be with 50K  items
b=set([5,7])

h=0
m=0
for ia, ib in zip(a,b):
    if ia in nset:  # Check against set in O(1)
        h =1
    if ib in nset:  # Check against set in O(1)
        m =1

print (h-m)

Note that ziping is doing nothing except possibly excluding some elements from being iterated at all; if len(a) != len(b), you'll fail to check the elements that would be iterated beyond the length of the shortest set. If you want to count them all, the simplest solution is to split the loops replacing the single loop with just:

h = sum(1 for ia in a if ia in nset)  # sum(ia in nset for ia in a) also works, but it's somewhat slower/less intuitive
m = sum(1 for ib in b if ib in nset)

CodePudding user response:

Speculating, the if x in y test is slowest. It probably doesn't help much to have a and b as sets - you're just zipping and enumerating. But if n was a set, then the membership test would likely be faster.

It's probably not necessary to zip, given that you don't appear to be doing anything with ia and ib such that they interact, but I doubt that that introduces much overhead.

CodePudding user response:

Here's an easy way - using set.intersection - and without using a for loop or zip function:

n = [1, 5, 3]  # can be with 100K  items
a = {3, 1}  # can be with 50K  items
b = {5, 7}

nset = set(n)  # cache set view of n

h = len(nset & a)
m = len(nset & b)

print(h - m)
  • Related