import haversine as hs
Input data has latitude and longitude for customer pincode and branch pincode.
Input:
Customer_lat_lon | branch_lat_lon|
(28.682,77.175) (28.599,77.334)
(19.126,72.865) (19.104,72.863)
i am creating a function which calculates the distance between the 2 columns.
def calc_distance:
try:
return hs.haversine(x,y)
except:
return np.nan
Now i need a new column as distance which calculates the distance between the 2 columns with the help of the function.
Example:
calc_distance(df['Customer_lat_lon'][0],df[branch_lat_lon][0])
gives me a result of 18.0612
How can I perform this for all the records. I have 1000 records for which distance needs to be calculated.
Expected output:
Customer_lat_lon | branch_lat_lon| distance
(28.682,77.175) (28.599,77.334) | 18.0612
CodePudding user response:
Usedf.apply()
to apply a function along an axis.
import numpy as np
import pandas as pd
from haversine import haversine
def calc_distance(s):
try:
return haversine(s.customer_lat_lon, s.branch_lat_lon)
except Exception:
return np.nan
df = pd.DataFrame(
{
"customer_lat_lon": [(28.682, 77.175), (19.126, 72.865)],
"branch_lat_lon": [(28.599, 77.334), (19.104, 72.863)],
}
)
df["Distance"] = df.apply(calc_distance, axis=1)
print(df)
customer_lat_lon branch_lat_lon Distance
0 (28.682, 77.175) (28.599, 77.334) 18.054029
1 (19.126, 72.865) (19.104, 72.863) 2.455300