I am filtering a column using a list and I have been using
str.contains("".format("|".join(towns))
This works on towns like "Atlanta", but not "New York" as it is searching for New and York seperately. Is there a way around this?
Reproducible example - They all return True:
array = ["New Jersey", "Atlanta", "New York", "Washington"]
df = pd.DataFrame({"col1": array})
towns = ["Atlanta", "New York"]
df["col1"].str.contains("".format("|".join(towns)))
CodePudding user response:
Try this;
import pandas as pd
array = ["New Jersey", "Atlanta", "New York", "Washington","New York City"]
df = pd.DataFrame({"col1": array})
towns = ["Atlanta", "New York"]
df["Town Check"] = df['col1'].apply(lambda x: len([i for i in towns if i in x]))
df1 = df[df["Town Check"] > 0]
del df1["Town Check"]
df1.index = range(0,df1.shape[0])
Output of df1;
col1
0 Atlanta
1 New York
2 New York City
CodePudding user response:
For your example data Series.isin works.
>>> df["col1"].isin(towns)
0 False
1 True
2 True
3 False
Name: col1, dtype: bool
If The Series is a bit different and you need to use a regular expression:
>>> dg = pd.DataFrame({"col1": ["New Jersey","Atlanta","New York",
"Washington", "The New York Times"]})
>>> dg
col1
0 New Jersey
1 Atlanta
2 New York
3 Washington
4 The New York Times
>>>
>>> rex = "|".join(towns)
>>> dg['col1'].str.contains(rex)
0 False
1 True
2 True
3 False
4 True
Name: col1, dtype: bool
>>> df
col1
0 New Jersey
1 Atlanta
2 New York
3 Washington