I'm working with a .txt archive, when I use pd.read_csv the rows look like that:
|0 | | -------- | | 2452791.268864 1.000268 0.000433 1 | . . .
I want this this numbers in 4 different columns, something like that:
| Column A | Column B | | -------- | -------- | | 2452791.268864 | 1.000268 | ... . . .
Note that the number of spaces between each number is different.
I'm so glad for your help!!!
I'm tried to use split functions but I don't get what I want.
CodePudding user response:
You can either set the delim_whitespace
parameter of pandas.read_csv
to True
:
df = pd.read_csv("your_text_file.txt", header=None, delim_whitespace=True)
Or use "\s "
(one space or more) as a separator :
df = pd.read_csv("your_text_file.txt", header=None, sep="\s ")
# Output :
print(df)
0 1 2 3
0 2.452791e 06 1.000268 0.000433 1
print(len(df.columns))
4