I have two separate data frames named df1 and df2 as shown below:
Scaffold Position Ref_Allele_Count Alt_Allele_Count Coverage_Depth Alt_Allele_Frequency
0 1 11 7 51 58 0.879310
1 1 16 20 95 115 0.826087
2 2 9 9 33 42 0.785714
3 2 12 86 51 137 0.372263
4 2 67 41 98 139 0.705036
5 3 8 0 0 0 0.000000
6 4 99 32 26 58 0.448276
7 4 101 100 24 124 0.193548
8 4 115 69 26 95 0.273684
9 5 6 40 57 97 0.587629
10 5 19 53 87 140 0.621429
Scaffold Position Ref_Allele_Count Alt_Allele_Count Coverage_Depth Alt_Allele_Frequency
0 1 11 7 64 71 0.901408
1 1 16 10 90 100 0.900000
2 2 9 79 86 165 0.521212
3 2 12 12 73 85 0.858824
4 2 67 54 96 150 0.640000
5 3 8 0 0 0 0.000000
6 4 99 86 28 114 0.245614
7 4 101 32 25 57 0.438596
8 4 115 97 16 113 0.141593
9 5 6 86 43 129 0.333333
10 5 19 59 27 86 0.313953
I have already found the sum values for df1 and df2 in Allele_Count and Coverage Depth but I need to divide the resulting Alt_Allele_Count and Coverage_Depth of both df's with one another to fine the total allele frequency(AF). I have tried dividing the two variable and got the error message : TypeError: float() argument must be a string or a number, not 'DataFrame' when I tried to convert them to floats and this table when I laft it as a df:
Alt_Allele_Count Coverage_Depth
0 NaN NaN
1 NaN NaN
2 NaN NaN
3 NaN NaN
4 NaN NaN
5 NaN NaN
6 NaN NaN
7 NaN NaN
8 NaN NaN
9 NaN NaN
10 NaN NaN
My code so far:
import csv
import pandas as pd
import numpy as np
df1 = pd.read_csv('C:/Users/Tom/Python_CW/file_pairA_1.csv')
df2 = pd.read_csv('C:/Users/Tom/Python_CW/file_pairA_2.csv')
print(df1)
print(df2)
Ref_Allele_Count = (df1[['Ref_Allele_Count']] df2[['Ref_Allele_Count']])
print(Ref_Allele_Count)
Alt_Allele_Count = (df1[['Alt_Allele_Count']] df2[['Alt_Allele_Count']])
print(Alt_Allele_Count)
Coverage_Depth = (df1[['Coverage_Depth']] df2[['Coverage_Depth']]).astype(float)
print(Coverage_Depth)
AF = Alt_Allele_Count / Coverage_Depth
print(AF)
CodePudding user response:
The error stems from the difference between a pandas series and a dataframe. Series are 1 dimensional structures like a singular column, while dataframes are 2d objects like tables. Series added together make a new series of values while dataframes added together make something a lot less usable.
Taking slices of a dataframe can either result in a series or dataframe object depending on how you do it:
df['column_name'] -> Series
df[['column_name', 'column_2']] -> Dataframe
So in the line:
Ref_Allele_Count = (df1[['Ref_Allele_Count']] df2[['Ref_Allele_Count']])
df1[['Ref_Allele_Count']] becomes a singular column dataframe rather than a series.
Ref_Allele_Count = (df1['Ref_Allele_Count'] df2['Ref_Allele_Count'])
Should return the correct result here. Same goes for the rest of the columns you're adding together.
CodePudding user response:
This can be fixed by only using once set of brackets '[]' while referring to a column in a pandas df, rather than 2.