Home > Enterprise >  Create a custom column in a dict format
Create a custom column in a dict format

Time:11-30

I currently have a dataframe like this

Person Analysis Dexterity Skills
174 3.76 4.12 1.20
239 4.10 3.78 3.77
557 5.00 2.00 4.40
674 2.23 2.40 2.80
122 3.33 4.80 4.10

I want to add an column to compile all this information like below

Person Analysis Dexterity Skills new_column
174 3.76 4.12 1.20 {"Analysis":"3.76", "Dexterity":"4.12", "Skills":"1.20"}
239 4.10 3.78 3.77 {"Analysis":"4.10", "Dexterity":"3.78", "Skills":"3.77"}
557 5.00 2.00 4.40 {"Analysis":"5.00", "Dexterity":"2.00", "Skills":"4.40"}
674 2.23 2.40 2.80 {"Analysis":"2.23", "Dexterity":"2.40", "Skills":"2.80"}
122 3.33 4.80 4.10 {"Analysis":"3.33", "Dexterity":"4.80", "Skills":"4.10"}

CodePudding user response:

You can use to to_dict method like so:

import pandas as pd

rows = [
    {'a': 1, 'b': 2},
    {'a': 3, 'b': 4},
]

df = pd.DataFrame(rows)

# define new column as the json format of another
# also convert to str as that is what you have in your output
df['c'] = df[['a', 'b']].astype(str).to_dict(orient='records')

to_dict has a really nice interface for transforming to JSON format or to other object types. In this instance you are looking for orient='records' which is a dictionary of keys.

In your case, you will use:

df['new_column'] = df[
    ['Analysis', 'Dexterity', 'Skills']
].astype(str).to_dict(orient='records')
  • Related