I would like to join a dataframe
df <- structure(list(IDDATE = c(1669935600, 1669939200, 1669942800, 1669946400,
1669950000, 1669953600, 1669957200, 1669960800, 1669964400, 1669968000,
1669971600, 1669975200, 1669978800, 1669982400, 1669986000, 1669989600,
1669993200, 1669996800, 1670000400, 1670004000, 1670007600, 1670011200,
1670014800, 1670018400, 1670022000, 1670025600, 1670029200, 1670032800,
1670036400, 1670040000, 1670043600, 1670047200, 1670050800, 1670054400,
1670058000, 1670061600, 1670065200, 1670068800, 1670072400, 1670076000,
1670079600, 1670083200, 1670086800, 1670090400, 1670094000, 1670097600,
1670101200, 1670104800, 1670108400), Value = c(32, 18, 31, 29,
34, 35, 21, 24, 35, 34, 31, 19, 29, 31, 29, 28, 19, 35, 22, 15,
28, 18, 25, 17, 17, 24, 28, 35, 34, 35, 19, 29, 31, 33, 25, 21,
28, 27, 22, 27, 15, 29, 27, 22, 17, 34, 17, 17, 31)), class = "data.frame", row.names = c(NA,
-49L))
With this vector file
IDDATE <- c(1669849200, 1669852800, 1669856400, 1669860000, 1669863600,
1669867200, 1669870800, 1669874400, 1669878000, 1669881600, 1669885200,
1669888800, 1669892400, 1669896000, 1669899600, 1669903200, 1669906800,
1669910400, 1669914000, 1669917600, 1669921200, 1669924800, 1669928400,
1669932000, 1669935600, 1669939200, 1669942800, 1669946400, 1669950000,
1669953600, 1669957200, 1669960800, 1669964400, 1669968000, 1669971600,
1669975200, 1669978800, 1669982400, 1669986000, 1669989600, 1669993200,
1669996800, 1670000400, 1670004000, 1670007600, 1670011200, 1670014800,
1670018400, 1670022000, 1670025600, 1670029200, 1670032800, 1670036400,
1670040000, 1670043600, 1670047200, 1670050800, 1670054400, 1670058000,
1670061600, 1670065200, 1670068800, 1670072400, 1670076000, 1670079600,
1670083200, 1670086800, 1670090400, 1670094000, 1670097600, 1670101200,
1670104800, 1670108400, 1670112000, 1670115600, 1670119200, 1670122800,
1670126400, 1670130000, 1670133600, 1670137200, 1670140800, 1670144400,
1670148000, 1670151600, 1670155200, 1670158800, 1670162400, 1670166000,
1670169600, 1670173200, 1670176800, 1670180400, 1670184000, 1670187600,
1670191200, 1670194800, 1670198400, 1670202000, 1670205600, 1670209200,
1670212800, 1670216400, 1670220000, 1670223600, 1670227200, 1670230800,
1670234400, 1670238000, 1670241600, 1670245200, 1670248800, 1670252400,
1670256000, 1670259600, 1670263200, 1670266800, 1670270400, 1670274000,
1670277600, 1670281200, 1670284800)
The purpose is to see eventual gaps in the dataframe and how many rows are missing.
I have tried to use join functions from dplyr
but does not seems to work...
library(dplyr)
library(tidyverse)
Date <- df %>% left_join(IDDATE, by = "IDDATE")
I have this error
Error in `auto_copy()`:
! `x` and `y` must share the same src.
ℹ set `copy` = TRUE (may be slow).
Run `rlang::last_error()` to see where the error occurred.
EDIT
I need to see eventual gaps between values, and do further data analysis regarding that. And not just see how much missing value there is.
CodePudding user response:
Turn vector in dataframe and then merge
df2 <- data.frame(IDDATE)
merge(df2,df,by='IDDATE',all.x=T)
IDDATE Value
1 1669849200 NA
2 1669852800 NA
3 1669856400 NA
4 1669860000 NA
5 1669863600 NA
6 1669867200 NA
7 1669870800 NA
8 1669874400 NA
9 1669878000 NA
10 1669881600 NA
11 1669885200 NA
12 1669888800 NA
13 1669892400 NA
14 1669896000 NA
15 1669899600 NA
16 1669903200 NA
17 1669906800 NA
18 1669910400 NA
19 1669914000 NA
20 1669917600 NA
21 1669921200 NA
22 1669924800 NA
23 1669928400 NA
24 1669932000 NA
25 1669935600 32
26 1669939200 18
27 1669942800 31
28 1669946400 29
29 1669950000 34
30 1669953600 35
31 1669957200 21
32 1669960800 24
33 1669964400 35
34 1669968000 34
35 1669971600 31
36 1669975200 19
37 1669978800 29
38 1669982400 31
39 1669986000 29
40 1669989600 28
41 1669993200 19
42 1669996800 35
43 1670000400 22
44 1670004000 15
45 1670007600 28
46 1670011200 18
47 1670014800 25
48 1670018400 17
49 1670022000 17
50 1670025600 24
51 1670029200 28
52 1670032800 35
53 1670036400 34
54 1670040000 35
55 1670043600 19
56 1670047200 29
57 1670050800 31
58 1670054400 33
59 1670058000 25
60 1670061600 21
61 1670065200 28
62 1670068800 27
63 1670072400 22
64 1670076000 27
65 1670079600 15
66 1670083200 29
67 1670086800 27
68 1670090400 22
69 1670094000 17
70 1670097600 34
71 1670101200 17
72 1670104800 17
73 1670108400 31
74 1670112000 NA
75 1670115600 NA
76 1670119200 NA
77 1670122800 NA
78 1670126400 NA
79 1670130000 NA
80 1670133600 NA
81 1670137200 NA
82 1670140800 NA
83 1670144400 NA
84 1670148000 NA
85 1670151600 NA
86 1670155200 NA
87 1670158800 NA
88 1670162400 NA
89 1670166000 NA
90 1670169600 NA
91 1670173200 NA
92 1670176800 NA
93 1670180400 NA
94 1670184000 NA
95 1670187600 NA
96 1670191200 NA
97 1670194800 NA
98 1670198400 NA
99 1670202000 NA
100 1670205600 NA
101 1670209200 NA
102 1670212800 NA
103 1670216400 NA
104 1670220000 NA
105 1670223600 NA
106 1670227200 NA
107 1670230800 NA
108 1670234400 NA
109 1670238000 NA
110 1670241600 NA
111 1670245200 NA
112 1670248800 NA
113 1670252400 NA
114 1670256000 NA
115 1670259600 NA
116 1670263200 NA
117 1670266800 NA
118 1670270400 NA
119 1670274000 NA
120 1670277600 NA
121 1670281200 NA
122 1670284800 NA