I have been exploring the rvest package and have a question regarding extracting urls from a list. My goal is to generate a df with the following headers: Country, City and the URL for the city. I already have a df with each of the countries and a list with the cities for each country.
My question is, how can I reference each city so that I can obtain its respective URL link? I am trying to reference the href inside the td class within "wikitable sortable jquery-tablesorter" but when I run links = webpage %>% html_node("href") %>% html_text()
I only get the main URL.
Thanks for the suggestions!
# Get URL
url = "https://en.wikipedia.org/wiki/List_of_towns_and_cities_with_100,000_or_more_inhabitants/country:_A-B"
# Read the HTML code from the website
page = read_html(url)
# Get name of the countries
countries = page %>% html_nodes(".mw-headline") %>% html_text()
#Remove the last two items which are not countries
countries = as.tibble(countries) %>%
slice(1:(n()-2))
#Add row number to each Country to left_join later
countries = rowid_to_column(countries, "column_label")
# Get cities for that country
# Still working on this since it includes the first table and I get blanks when I filter the html_nodes(".jquery-tablesorter td")
tables = html_nodes(page, "table")
tables = lapply(tables, html_table)
#Remove fist element which is not a city, only on the first page
tables = tables[-1]
#---WIP
# Get links for the cities, currently picks the main domain instead of the city
# Can I add a clause before the html node to indicate I want the href from "wikitable sortable jquery-tablesorter"?
links = page %>% html_attr("href") %>% html_text()
#---
#Remove the Providence and Population columns and keeps City and URL
tables = lapply(tables, "[", -c(2, 3))
#Standardize City as the column
tables = map(tables, set_names, "City")
# Flatten List
all <- bind_rows(tables, .id = "column_label") %>%
mutate(column_label = as.integer(column_label)) %>%
left_join(countries, by = "column_label")
CodePudding user response:
One approach to achieve your desired result may look like so. I took a different appraoch and use a small custom function to get your desired content by scraping the table rows:
library(tidyverse)
library(rvest)
# Get a dataframe of city names and urls for one table
get_cities <- function(x) {
x %>%
html_nodes("tr") %>%
.[-1] %>%
# Get first column/cell containing city
html_node("td a") %>%
map_dfr(function(x) {
data.frame(
city = html_text(x),
url = html_attr(x, "href")
)
})
}
url <- "https://en.wikipedia.org/wiki/List_of_towns_and_cities_with_100,000_or_more_inhabitants/country:_A-B"
# Read the HTML code from the website
webpage <- read_html(url)
# Get name of the countries
countries <- webpage %>%
html_nodes(".mw-headline") %>%
html_text()
countries <- countries[!grepl("(See also|References)", countries)]
# Get table nodes
tables <- webpage %>%
html_nodes("table.wikitable.sortable")
names(tables) <- countries
res <- map_dfr(tables, get_cities, .id = "country")
head(res)
#> country city url
#> 1 Afghanistan Ghazni /wiki/Ghazni
#> 2 Afghanistan Herat /wiki/Herat
#> 3 Afghanistan Jalalabad /wiki/Jalalabad
#> 4 Afghanistan Kabul /wiki/Kabul
#> 5 Afghanistan Kandahar /wiki/Kandahar
#> 6 Afghanistan Khost /wiki/Khost
CodePudding user response:
Here's a fully reproducible example that gets you a table of the cities with their full url:
library(tidyverse)
library(rvest)
"https://en.wikipedia.org/wiki/" %>%
paste0('List_of_towns_and_cities_with_100,000_or_more_inhabitants/') %>%
paste0('country:_A-B') %>%
read_html() %>%
html_nodes(xpath = "//table/tbody/tr") %>%
lapply(function(x) {
node <- xml2::xml_find_first(x, 'td/a')
data.frame(city = html_attr(node, 'title'),
url = paste0("https://en.wikipedia.org/wiki",
html_attr(node, 'href')))}) %>%
bind_rows() %>%
remove_missing(na.rm = TRUE) %>%
as_tibble()
#> # A tibble: 534 x 2
#> city url
#> <chr> <chr>
#> 1 Ghazni https://en.wikipedia.org/wiki/wiki/Ghazni
#> 2 Herat https://en.wikipedia.org/wiki/wiki/Herat
#> 3 Jalalabad https://en.wikipedia.org/wiki/wiki/Jalalabad
#> 4 Kabul https://en.wikipedia.org/wiki/wiki/Kabul
#> 5 Kandahar https://en.wikipedia.org/wiki/wiki/Kandahar
#> 6 Khost https://en.wikipedia.org/wiki/wiki/Khost
#> 7 Kunduz https://en.wikipedia.org/wiki/wiki/Kunduz
#> 8 Lashkargah https://en.wikipedia.org/wiki/wiki/Lashkargah
#> 9 Mazar-i-Sharif https://en.wikipedia.org/wiki/wiki/Mazar-i-Sharif
#> 10 Mihtarlam https://en.wikipedia.org/wiki/wiki/Mihtarlam
#> # ... with 524 more rows
Created on 2023-01-06 with reprex v2.0.2