I am trying to create a program in Python that retrieves webcam footage and applies a slow and constant change in hue, similar to a hue cycling effect. Additionally, I am wondering if it would be possible to apply the hue cycle only to the color green in the webcam footage, though I am unsure how to detect the color in the frame and apply the cycle only to that color.
I have tried playing around with this code I found, though it gets applied to the whole frame and on the output in certain spots discoloration/weird spots depending on the part of the cycle it is on.
import cv2
import numpy as np
# Initialize video capturer
cap = cv2.VideoCapture(0)
# Set frame width and height
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Initialize angle for hue rotation
angle = 0
while True:
# Capture frame
ret, frame = cap.read()
# Convert frame to HSV color space
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# Split channels
h, s, v = cv2.split(hsv)
# Increment angle
angle = (angle 1) % 360
# Rotate hue channel
h = (h angle) % 180
# Merge channels back to HSV image
hsv = cv2.merge((h, s, v))
# Convert back to BGR color space
result = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
# Display frame
cv2.imshow("Webcam", result)
# Check for user input
key = cv2.waitKey(1)
if key == 27: # Esc key
break
# Release video capturer
cap.release()
# Close all windows
cv2.destroyAllWindows()
CodePudding user response:
You can detect the color green in the frame using color thresholds and a mask. To detect the color green try the inRange function:
import cv2
import numpy as np
# Initialize video capturer
cap = cv2.VideoCapture(0)
# Set frame width and height
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# Initialize angle for hue rotation
angle = 0
while True:
# Capture frame
ret, frame = cap.read()
# Convert frame to HSV color space
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# Split channels
h, s, v = cv2.split(hsv)
# Define lower and upper bounds for green color
lower_green = np.array([50, 50, 50])
upper_green = np.array([70, 255, 255])
# Create mask for green color
mask = cv2.inRange(hsv, lower_green, upper_green)
# Increment angle
angle = (angle 1) % 360
# Rotate hue channel only for green pixels
h[mask != 0] = (h[mask != 0] angle) % 180
# Merge channels back to HSV image
hsv = cv2.merge((h, s, v))
# Convert back to BGR color space
result = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
# Display frame
cv2.imshow("Webcam", result)
# Check for user input
key = cv2.waitKey(1)
if key == 27: # Esc key
break
# Release video capturer
cap.release()
# Close all windows
cv2.destroyAllWindows()
CodePudding user response:
There is an issue with the expression h = (h angle) % 180
.
h
type is uint8
, and the range of uint8
elements is [0, 255].
The valid range of hue in OpenCV is [0, 180].
When angle
> 75
, the expression h angle
may result numerical overflow.
For preventing the overflow we may cast to uint16
, add the angle
, and cast back to uint8
after applying the modulo.
Replace h = (h angle) % 180
with:
h = ((h.astype(np.uint16) angle) % 180).astype(np.uint8)
For testing I used an image instead of using a Webcam - it makes the solution more reproducible.
Code sample:
import cv2
import numpy as np
frame = cv2.imread('peppers.png') # Read sample image
cv2.imshow("frame", frame)
# Initialize angle for hue rotation
angle = 0
for i in range(1000):
# Convert frame to HSV color space
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
# Split channels
h, s, v = cv2.split(hsv)
# Increment angle
angle = (angle 1) % 360
# Rotate hue channel
#h = (h angle) % 180
h = ((h.astype(np.uint16) angle) % 180).astype(np.uint8)
# Merge channels back to HSV image
hsv = cv2.merge((h, s, v))
# Convert back to BGR color space
result = cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
# Display frame
cv2.imshow("Webcam", result)
cv2.waitKey(40)
cv2.destroyAllWindows()
Input image (used for testing):
About applying hue cycle only to the color green, it's not very "well defined".
We may find the green pixels, form a mask, and modify only the non-zero pixels in the mask.
The issue is that there is going to be discontinuity between the pixels that are considered green, and the surrounding pixels that are almost green.