I have this DCGAN that is pretty close to the TensorFlow docs.
Here is the tutorial: https://www.tensorflow.org/tutorials/generative/dcgan
It uses greyscale values in the test data. I am looking to start training with color data instead of just black and white.
I am assuming that the shape of the training data will need to change, but does the shape of the generator model need to change too?
How can I adapt this code to an RGB implementation?
from google.colab import drive
drive.mount('/content/drive')
import tensorflow as tf
import glob
import matplotlib.pyplot as plt
import numpy as np
import os
import PIL
from tensorflow.keras import layers
import time
from IPython import display
train_dataset = tf.keras.preprocessing.image_dataset_from_directory(
"/content/drive/MyDrive/birds",
seed=123,
validation_split=0,
image_size=(112, 112),
color_mode="grayscale",
shuffle=True,
batch_size=1)
train_images_array = []
for images, _ in train_dataset:
for i in range(len(images)):
train_images_array.append(images[i])
train_images = np.array(train_images_array)
train_images = train_images.reshape(train_images.shape[0],112,112,1).astype('float32')
train_images = (train_images - 127.5) / 127.5 # Normalize the images to [-1, 1]
BUFFER_SIZE = 60000
BATCH_SIZE = 8
# Batch and shuffle the data
dataset_ = tf.data.Dataset.from_tensor_slices(train_images).shuffle(BUFFER_SIZE).batch(BATCH_SIZE)
def make_generator_model():
model = tf.keras.Sequential()
model.add(layers.Dense(7*7*256, use_bias=False, input_shape=(100,)))
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Reshape((7, 7, 256)))
assert model.output_shape == (None, 7, 7, 256) # Note: None is the batch size
model.add(layers.Conv2DTranspose(128, (5, 5), strides=(1, 1), padding='same', use_bias=False))
assert model.output_shape == (None, 7, 7, 128)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(64, (5, 5), strides=(2, 2), padding='same', use_bias=False))
assert model.output_shape == (None, 14, 14, 64)
model.add(layers.BatchNormalization())
model.add(layers.LeakyReLU())
model.add(layers.Conv2DTranspose(1, (20, 20), strides=(8, 8), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 112, 112, 1)
return model
generator = make_generator_model()
noise = tf.random.normal([1, 100])
generated_image = generator(noise, training=False)
plt.imshow(generated_image[0, :, :, 0], cmap='gray')
def make_discriminator_model():
model = tf.keras.Sequential()
model.add(layers.Conv2D(64, (10, 10), strides=(2, 2), padding='same', input_shape=[112, 112, 1]))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Conv2D(128, (5, 5), strides=(2, 2), padding='same', input_shape=[112, 112, 1]))
model.add(layers.LeakyReLU())
model.add(layers.Dropout(0.3))
model.add(layers.Flatten())
model.add(layers.Dense(1))
return model
discriminator = make_discriminator_model()
decision = discriminator(generated_image)
print (decision)
# This method returns a helper function to compute cross entropy loss
cross_entropy = tf.keras.losses.BinaryCrossentropy(from_logits=True)
def discriminator_loss(real_output, fake_output):
real_loss = cross_entropy(tf.ones_like(real_output), real_output)
fake_loss = cross_entropy(tf.zeros_like(fake_output), fake_output)
total_loss = real_loss fake_loss
return total_loss
def generator_loss(fake_output):
return cross_entropy(tf.ones_like(fake_output), fake_output)
generator_optimizer = tf.keras.optimizers.Adam(1e-4)
discriminator_optimizer = tf.keras.optimizers.Adam(1e-4)
checkpoint_dir = '/content/drive/MyDrive/training_checkpoints11'
checkpoint_prefix = os.path.join(checkpoint_dir, "ckpt")
checkpoint = tf.train.Checkpoint(generator_optimizer=generator_optimizer,
discriminator_optimizer=discriminator_optimizer,
generator=generator,
discriminator=discriminator)
EPOCHS = 50
noise_dim = 100
num_examples_to_generate = 16
# You will reuse this seed overtime (so it's easier)
# to visualize progress in the animated GIF)
seed = tf.random.normal([num_examples_to_generate, noise_dim])
def generate_and_save_images(model, epoch, test_input):
# Notice `training` is set to False.
# This is so all layers run in inference mode (batchnorm).
predictions = model(test_input, training=False)
fig = plt.figure(figsize=(4, 4))
for i in range(predictions.shape[0]):
plt.subplot(4, 4, i 1)
plt.imshow(predictions[i, :, :, 0] * 127.5 127.5, cmap='gray')
plt.axis('off')
plt.savefig('image_at_epoch_{:04d}.png'.format(epoch))
plt.show()
# Notice the use of `tf.function`
# This annotation causes the function to be "compiled".
@tf.function
def train_step(images):
noise = tf.random.normal([BATCH_SIZE, noise_dim])
with tf.GradientTape() as gen_tape, tf.GradientTape() as disc_tape:
generated_images = generator(noise, training=True)
real_output = discriminator(images, training=True)
fake_output = discriminator(generated_images, training=True)
gen_loss = generator_loss(fake_output)
disc_loss = discriminator_loss(real_output, fake_output)
gradients_of_generator = gen_tape.gradient(gen_loss, generator.trainable_variables)
gradients_of_discriminator = disc_tape.gradient(disc_loss, discriminator.trainable_variables)
generator_optimizer.apply_gradients(zip(gradients_of_generator, generator.trainable_variables))
discriminator_optimizer.apply_gradients(zip(gradients_of_discriminator, discriminator.trainable_variables))
def train(dataset, epochs):
for epoch in range(epochs):
start = time.time()
for image_batch in dataset:
train_step(image_batch)
# Produce images for the GIF as you go
display.clear_output(wait=True)
generate_and_save_images(generator,
epoch 1,
seed)
# Save the model every 1 epochs
if (epoch 1) % 8 == 0:
checkpoint.save(file_prefix = checkpoint_prefix)
print ('Time for epoch {} is {} sec'.format(epoch 1, time.time()-start))
# Generate after the final epoch
display.clear_output(wait=True)
generate_and_save_images(generator,
epochs,
seed)
return
train(dataset_, 128)
noise = tf.random.normal([1, 100])
generated_image = generator(noise, training=False)
print(generated_image.shape)
plt.imshow(generated_image[0, :, :, 0], cmap='gray')
checkpoint.restore(tf.train.latest_checkpoint(checkpoint_dir))
CodePudding user response:
Yes the generator needs to be changed too. Greyscale has one channel and you need three.
So you need to change
model.add(layers.Conv2DTranspose(1, (20, 20), strides=(8, 8), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 112, 112, 1)
to
model.add(layers.Conv2DTranspose(3, (20, 20), strides=(8, 8), padding='same', use_bias=False, activation='tanh'))
assert model.output_shape == (None, 112, 112, 3)