I'm trying to iterate over a tensor in eager mode but I can't.
Naturally, you would do something like:
probs = tf.convert_to_tensor(np.array([[1,2,3], [4,5,6], [7,8,9]]))
indexs = tf.convert_to_tensor(np.array([1, 2, 3]))
@tf.function
def iterate_tensor(probs, indexs):
return [output[label] for output, label in zip(probs, indexs)]
iterate_tensor(probs, indexs)
But this gives the error OperatorNotAllowedInGraphError: iterating over `tf.Tensor` is not allowed:
Another thing that I tried was:
probs = tf.convert_to_tensor(np.array([[1,2,3], [4,5,6], [7,8,9]]))
indexs = tf.convert_to_tensor(np.array([1, 2, 3]))
@tf.function
def iterate_tensor(probs, indexs):
return tf.map_fn(lambda i: i[0][i[1]], (probs, indexs), dtype=(tf.int64, tf.int64))
iterate_tensor(probs, indexs)
Gives the error ValueError: The two structures don't have the same nested structure.
CodePudding user response:
This seems to work:
probs = tf.convert_to_tensor(np.array([[1,2,3], [4,5,6], [7,8,9]]))
indexs = tf.convert_to_tensor(np.array([1,1,1]))
@tf.function
def iterate_tensor(probs, indexs):
return tf.linalg.diag_part(tf.gather(probs, indexs, axis=1))
iterate_tensor(probs, indexs)
Output: <tf.Tensor: shape=(3,), dtype=int64, numpy=array([2, 5, 8])>