I have a Pandas DataFrame looking like this, df:
text label
a country
a sport
b cooking
b cooking
c travel
c design
d tech
I would like to have two dataframes. One with duplicated rows from 'text' column when value on 'label' column change. And the other keeping everything else.
Expected outputs, df1:
text label
a country
a sport
c travel
c design
And df2:
text label
b cooking
b cooking
d tech
CodePudding user response:
Use DataFrame.duplicated
for test one or multiple columns for masks:
m1 = df.duplicated('text', keep=False)
m2 = df.duplicated(['text','label'], keep=False)
#if all columns
#m2 = df.duplicated(keep=False)
mask = m2 | ~m1
df1 = df[~mask]
df2 = df[mask]
print (df1)
text label
0 a country
1 a sport
4 c travel
5 c design
print (df2)
text label
2 b cooking
3 b cooking
6 d tech
Another approach is check number of unique values per groups - if equal like 1
or not:
mask = df.groupby('text')['label'].transform('nunique').eq(1)
df1 = df[~mask]
df2 = df[mask]
If change data ouput is different:
print (df)
text label
0 a country
1 a sport
2 a sport
3 b cooking
4 b cooking
5 c travel
6 c design
7 d tech
m1 = df.duplicated('text', keep=False)
m2 = df.duplicated(['text','label'], keep=False)
#if all columns
#m2 = df.duplicated(keep=False)
mask = m2 | ~m1
df1 = df[~mask]
df2 = df[mask]
print (df1)
text label
0 a country
5 c travel
6 c design
print (df2)
text label
1 a sport
2 a sport
3 b cooking
4 b cooking
7 d tech
mask = df.groupby('text')['label'].transform('nunique').eq(1)
df1 = df[~mask]
df2 = df[mask]
print (df1)
text label
0 a country
1 a sport
2 a sport
5 c travel
6 c design
print (df2)
text label
3 b cooking
4 b cooking
7 d tech
CodePudding user response:
# get index of rows have duplicated `text`
duplicated = df.duplicated('text', keep=False)
duplicated_index = duplicated[duplicated == True].index
# select df1 and df2 according to this index
df1 = df.loc[duplicated_index].reset_index(drop=True)
df2 = df.loc[set(df.index) - set(duplicated_index)].reset_index(drop=True)
# we get
df1
text label
0 a country
1 a sport
2 c travel
3 c designe
df2
text label
0 b cooking
1 d tech