So, I'm looking for an efficient way to set up values within an existing column and setting values for a new column based on some conditions. If I have 10 conditions in a big data set, do I have to write 10 lines? Or can I combine them somehow...haven't figured it out yet. Can you guys suggest something?
For example:
data_frame.loc[data_frame.col1 > 50 ,["col1","new_col"]] = "Cool"
data_frame.loc[data_frame.col2 < 100 ,["col1","new_col"]] = "Cool"
Can it be written in a single expression? "&" or "and" don't work...
Thanks!
CodePudding user response:
yes you can do it, here is an example:
data_frame.loc[(data_frame["col1"]>100) & (data_frame["col2"]<10000) | (data_frame["col3"]<500),"test"] = 0
explanation:
the filter I used is (with "and" and "or" conditions): (data_frame["col1"]>100) & (data_frame["col2"]<10000) | (data_frame["col3"]<500)
the column that will be changed is "test" and the value will be 0
CodePudding user response:
You can try:
all_conditions = [condition_1, condition_2]
fill_with = [fill_condition_1_with, fill_condition_2_with]
df[["col1","new_col"]] = np.select(all_conditions, fill_with, default=default_value_here)