I am trying to apply vectorization with custom function
on numpy string arrays
.
Example:
import numpy
test_array = numpy.char.array(["sample1-sample","sample2-sample"])
numpy.char.array(test_array.split('-'))[:,0]
Op:
chararray([b'sample1', b'sample2'], dtype='|S7')
But these are in-built
functions, is there any other method to achieve vectorization with custom functions
. Example, with the following function:
def custom(text):
return text[0]
CodePudding user response:
numpy
doesn't implement fast string methods (as it does for numeric dtypes). So the np.char
code is more for convenience than performance.
In [124]: alist=["sample1-sample","sample2-sample"]
In [125]: arr = np.array(alist)
In [126]: carr = np.char.array(alist)
A straightforward list comprehension versus your code:
In [127]: [item.split('-')[0] for item in alist]
Out[127]: ['sample1', 'sample2']
In [128]: np.char.array(carr.split('-'))[:,0]
Out[128]: chararray([b'sample1', b'sample2'], dtype='|S7')
In [129]: timeit [item.split('-')[0] for item in alist]
664 ns ± 32.8 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
In [130]: timeit np.char.array(carr.split('-'))[:,0]
20.5 µs ± 297 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
For the simple task of clipping the strings, there is a fast numpy
way - using a shorter dtype
:
In [131]: [item[0] for item in alist]
Out[131]: ['s', 's']
In [132]: carr.astype('S1')
Out[132]: chararray([b's', b's'], dtype='|S1')
But assuming that's just an example, not your real world custom action, I suggest using lists.
np.char
recommends using the np.char
functions and ordinary array instead of np.char.array
. The functionality is basically the same. But using the arr
above:
In [140]: timeit np.array(np.char.split(arr, '-').tolist())[:,0]
13.8 µs ± 90.3 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
np.char
functions often produce string dtype arrays, but split creates an object dtype array of lists:
In [141]: np.char.split(arr, '-')
Out[141]:
array([list(['sample1', 'sample']), list(['sample2', 'sample'])],
dtype=object)
Object dtype arrays are essentially lists.
In [145]: timeit [item[0] for item in np.char.split(arr, '-').tolist()]
9.08 µs ± 27.5 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
Your code is relatively slow because it takes time to convert this array of lists into a new chararray
.