I have a dataframe such as :
Groups COL1
G1 1
G2 3
G3 5
G1 7
G2 9
G3 11
And I would like to take the column Groups
as multiple unique colums such as :
G1 G2 G3
1 1 3 5
2 7 9 8
Does someone have an idea please ?
Here is the toy data if it can helps :
structure(list(Groups = c("G1", "G2", "G3", "G1", "G2", "G3"),
Col1 = c(1L, 3L, 5L, 7L, 9L, 11L)), class = "data.frame", row.names = c(NA,
-6L))
CodePudding user response:
After your edits, here's a dplyr
and tidyr
solution:
library(tidyverse)
df %>%
pivot_wider(names_from = Groups,
values_from = Col1,
values_fn = list) %>%
unnest(cols = c(G1,G2,G3))
Output:
G1 G2 G3
<int> <int> <int>
1 1 3 5
2 7 9 11
Data used:
df <- structure(list(Groups = c("G1", "G2", "G3", "G1", "G2", "G3"),
Col1 = c(1L, 3L, 5L, 7L, 9L, 11L)), class = "data.frame", row.names = c(NA,
-6L))
CodePudding user response:
Another idea is:
df %>%
group_by(Groups) %>%
mutate(index = row_number()) %>%
pivot_wider(names_from = "Groups", values_from = "Col1")
# A tibble: 2 x 4
index G1 G2 G3
<int> <int> <int> <int>
1 1 1 3 5
2 2 7 9 11
Can drop index
in the end
CodePudding user response:
We may use unstack
from base R
unstack(df, Col1 ~ Groups)
G1 G2 G3
1 1 3 5
2 7 9 11