Home > Mobile >  Adjust shiny code so graphics are rendered correctly
Adjust shiny code so graphics are rendered correctly

Time:10-12

I will detail this issue because I think it makes it easier for you to help me identify the problem that is occurring.

You will see two codes. The first one is just a function to generate graphs according to a certain date and category. According to the date (30/06 and 01/07) and category (FDE and ABC) options I can generate four different graphics (I inserted the images for you to see). If I just use this function, it works normally.

However, I have the second code I made to use this same function of code 1, but in Shiny. I built the code in Shiny, but it doesn't work very well. The code only worked for the first graph, because I defined my dmda and CategoryChosse. However, I want the code to be able to generate for both dates/categories. If by chance I build it wrong on shiny, feel free to tweak it as best you like. I am open to suggestions.

First code

library(dplyr)
library(tidyverse)
library(lubridate)

df1 <- structure(
  list(date1= c("2021-06-28","2021-06-28","2021-06-28","2021-06-28"),
       date2 = c("2021-06-30","2021-06-30","2021-07-01","2021-07-01"),
       Category = c("FDE","ABC","FDE","ABC"),
       Week= c("Wednesday","Wednesday","Friday","Friday"),
       DR1 = c(4,1,6,3),
       DR01 = c(4,1,4,3), DR02= c(4,2,6,2),DR03= c(9,5,4,7),
       DR04 = c(5,4,3,2),DR05 = c(5,4,5,4),
       DR06 = c(2,4,3,2),DR07 = c(2,5,4,4),
       DR08 = c(3,4,5,4),DR09 = c(2,3,4,4)),
  class = "data.frame", row.names = c(NA, -4L))


f1 <- function(dmda, CategoryChosse) {

  x<-df1 %>% select(starts_with("DR0"))
  
  x<-cbind(df1, setNames(df1$DR1 - x, paste0(names(x), "_PV")))
  PV<-select(x, date2,Week, Category, DR1, ends_with("PV"))
  
  med<-PV %>%
    group_by(Category,Week) %>%
    summarize(across(ends_with("PV"), median))
  
  SPV<-df1%>%
    inner_join(med, by = c('Category', 'Week')) %>%
    mutate(across(matches("^DR0\\d $"), ~.x   
                    get(paste0(cur_column(), '_PV')),
                  .names = '{col}_{col}_PV')) %>%
    select(date1:Category, DR01_DR01_PV:last_col())
  
  SPV<-data.frame(SPV)
  
  mat1 <- df1 %>%
    filter(date2 == dmda, Category == CategoryChosse) %>%
    select(starts_with("DR0")) %>%
    pivot_longer(cols = everything()) %>%
    arrange(desc(row_number())) %>%
    mutate(cs = cumsum(value)) %>%
    filter(cs == 0) %>%
    pull(name)
  
  (dropnames <- paste0(mat1,"_",mat1, "_PV"))
  
  SPV <- SPV %>%
    filter(date2 == dmda, Category == CategoryChosse) %>%
    select(-any_of(dropnames))
  
  datas<-SPV %>%
    filter(date2 == ymd(dmda)) %>%
    group_by(Category) %>%
    summarize(across(starts_with("DR0"), sum)) %>%
    pivot_longer(cols= -Category, names_pattern = "DR0(. )", values_to = "val") %>%
    mutate(name = readr::parse_number(name))
  colnames(datas)[-1]<-c("Days","Numbers")
  
  datas <- datas %>% 
    group_by(Category) %>% 
    slice((as.Date(dmda) - min(as.Date(df1$date1) [
      df1$Category == first(Category)])):max(Days) 1) %>%
    ungroup
 

  plot(Numbers ~ Days,  xlim= c(0,45), ylim= c(0,30),
       xaxs='i',data = datas,main = paste0(dmda, "-", CategoryChosse))
  
  model <- nls(Numbers ~ b1*Days^2 b2,start = list(b1 = 0,b2 = 0),data = datas, algorithm = "port")
  
  new.data <- data.frame(Days = with(datas, seq(min(Days),max(Days),len = 45)))
  new.data <- rbind(0, new.data)
  lines(new.data$Days,predict(model,newdata = new.data),lwd=2)
  coef<-coef(model)[2]
  points(0, coef, col="red",pch=19,cex = 2,xpd=TRUE)
  text(.99,coef   1,max(0, round(coef,1)), cex=1.1,pos=4,offset =1,col="black")
  
}

f1("2021-06-30", "FDE")
f1("2021-06-30", "ABC")
f1("2021-07-01", "FDE")
f1("2021-07-01", "ABC")

enter image description here

enter image description here

enter image description here

enter image description here

Second code

library(shiny)
library(shinythemes)
library(dplyr)
library(tidyverse)
library(lubridate)
library(stringr)

function.test<-function(dmda,CategoryChosse){
  
  df1 <- structure(
    list(date1= c("2021-06-28","2021-06-28","2021-06-28","2021-06-28"),
         date2 = c("2021-06-30","2021-06-30","2021-07-01","2021-07-01"),
         Category = c("FDE","ABC","FDE","ABC"),
         Week= c("Wednesday","Wednesday","Friday","Friday"),
         DR1 = c(4,1,6,3),
         DR01 = c(4,1,4,3), DR02= c(4,2,6,2),DR03= c(9,5,4,7),
         DR04 = c(5,4,3,2),DR05 = c(5,4,5,4),
         DR06 = c(2,4,3,2),DR07 = c(2,5,4,4),
         DR08 = c(3,4,5,4),DR09 = c(2,3,4,4)),
    class = "data.frame", row.names = c(NA, -4L))
  

  dmda<-"2021-06-30"
  CategoryChosse<-"FDE"
  
  f1 <- function(dmda, CategoryChosse) {
    
      x<-df1 %>% select(starts_with("DR0"))
    
    x<-cbind(df1, setNames(df1$DR1 - x, paste0(names(x), "_PV")))
    PV<-select(x, date2,Week, Category, DR1, ends_with("PV"))
    
    med<-PV %>%
      group_by(Category,Week) %>%
      summarize(across(ends_with("PV"), median))
    
    SPV<-df1%>%
      inner_join(med, by = c('Category', 'Week')) %>%
      mutate(across(matches("^DR0\\d $"), ~.x   
                      get(paste0(cur_column(), '_PV')),
                    .names = '{col}_{col}_PV')) %>%
      select(date1:Category, DR01_DR01_PV:last_col())
    
    SPV<-data.frame(SPV)
    
    mat1 <- df1 %>%
      filter(date2 == dmda, Category == CategoryChosse) %>%
      select(starts_with("DR0")) %>%
      pivot_longer(cols = everything()) %>%
      arrange(desc(row_number())) %>%
      mutate(cs = cumsum(value)) %>%
      filter(cs == 0) %>%
      pull(name)
    
    (dropnames <- paste0(mat1,"_",mat1, "_PV"))
    
    SPV <- SPV %>%
      filter(date2 == dmda, Category == CategoryChosse) %>%
      select(-any_of(dropnames))
    
    datas<-SPV %>%
      filter(date2 == ymd(dmda)) %>%
      group_by(Category) %>%
      summarize(across(starts_with("DR0"), sum)) %>%
      pivot_longer(cols= -Category, names_pattern = "DR0(. )", values_to = "val") %>%
      mutate(name = readr::parse_number(name))
    colnames(datas)[-1]<-c("Days","Numbers")
    
    datas <- datas %>% 
      group_by(Category) %>% 
      slice((as.Date(dmda) - min(as.Date(df1$date1) [
        df1$Category == first(Category)])):max(Days) 1) %>%
      ungroup
    
    plot(Numbers ~ Days,  xlim= c(0,45), ylim= c(0,30),
         xaxs='i',data = datas,main = paste0(dmda, "-", CategoryChosse))
    
    model <- nls(Numbers ~ b1*Days^2 b2,start = list(b1 = 0,b2 = 0),data = datas, algorithm = "port")
    
    new.data <- data.frame(Days = with(datas, seq(min(Days),max(Days),len = 45)))
    new.data <- rbind(0, new.data)
    lines(new.data$Days,predict(model,newdata = new.data),lwd=2)
    coef<-coef(model)[2]
    points(0, coef, col="red",pch=19,cex = 2,xpd=TRUE)
    text(.99,coef   1,max(0, round(coef,1)), cex=1.1,pos=4,offset =1,col="black")
    
  }
  
 
  Plot1<- f1(dmda, CategoryChosse)
  
  
  return(list(
    "Plot1" = Plot1, 
    date2 = df1$date2,
    data = df1
  ))
}

ui <- fluidPage(
  
  ui <- shiny::navbarPage(theme = shinytheme("flatly"), collapsible = TRUE,
                          br(),
                          
                          tabPanel("",
                                   sidebarLayout(
                                     sidebarPanel(
                                       
                                       uiOutput("date"),
                                       uiOutput("mycode"),
                                       br(),
                                       
                                       
                                     ),
                                     
                                     mainPanel(
                                       tabsetPanel(
                                         tabPanel("", plotOutput("graph",width = "100%", height = "600") 
                                         )
                                       ),
                                     ))
                          )))


server <- function(input, output,session) {
  
  data <- reactive(function.test(df1))
  
  output$date <- renderUI({
    all_dates <- seq(as.Date('2021-01-01'), as.Date('2021-01-15'), by = "day")
    disabled <- as.Date(setdiff(all_dates, as.Date(data()$date2)), origin = "1970-01-01")
    dateInput(input = "date2", 
              label = h4("Data"),
              min = min(data()$date2),
              max = max(data()$date2),
              value = min(data()$date2),
              format = "dd-mm-yyyy",
              datesdisabled = disabled)
    
  })
  
  output$mycode <- renderUI({
    req(input$date2)
    df1 <- data()$data
    df2 <- df1[as.Date(df1$date2) %in% input$date2,]
    selectInput("code", label = h4("Code"),choices=unique(df2$Category))
  })
  
  output$graph <- renderPlot({
    req(input$date2,input$code)
    function.test(as.character(input$date2),as.character(input$code))[["Plot1"]]
    
  })

}

shinyApp(ui = ui, server = server)

![image|690x388](upload://fu5OAMb3SSqYImElquqXk9KtxO3.png)

CodePudding user response:

Try this

library(shiny)
library(shinythemes)
library(dplyr)
library(tidyverse)
library(lubridate)
library(stringr)

function.test<-function(){
  
  df1 <- structure(
    list(date1= c("2021-06-28","2021-06-28","2021-06-28","2021-06-28"),
         date2 = c("2021-06-30","2021-06-30","2021-07-01","2021-07-01"),
         Category = c("FDE","ABC","FDE","ABC"),
         Week= c("Wednesday","Wednesday","Friday","Friday"),
         DR1 = c(4,1,6,3),
         DR01 = c(4,1,4,3), DR02= c(4,2,6,2),DR03= c(9,5,4,7),
         DR04 = c(5,4,3,2),DR05 = c(5,4,5,4),
         DR06 = c(2,4,3,2),DR07 = c(2,5,4,4),
         DR08 = c(3,4,5,4),DR09 = c(2,3,4,4)),
    class = "data.frame", row.names = c(NA, -4L))
  
  return(df1)
}

  f1 <- function(df1, dmda, CategoryChosse) {
    
    x<-df1 %>% select(starts_with("DR0"))
    
    x<-cbind(df1, setNames(df1$DR1 - x, paste0(names(x), "_PV")))
    PV<-select(x, date2,Week, Category, DR1, ends_with("PV"))
    
    med<-PV %>%
      group_by(Category,Week) %>%
      summarize(across(ends_with("PV"), median))
    
    SPV<-df1%>%
      inner_join(med, by = c('Category', 'Week')) %>%
      mutate(across(matches("^DR0\\d $"), ~.x   
                      get(paste0(cur_column(), '_PV')),
                    .names = '{col}_{col}_PV')) %>%
      select(date1:Category, DR01_DR01_PV:last_col())
    
    SPV<-data.frame(SPV)
    
    mat1 <- df1 %>%
      filter(date2 == dmda, Category == CategoryChosse) %>%
      select(starts_with("DR0")) %>%
      pivot_longer(cols = everything()) %>%
      arrange(desc(row_number())) %>%
      mutate(cs = cumsum(value)) %>%
      filter(cs == 0) %>%
      pull(name)
    
    (dropnames <- paste0(mat1,"_",mat1, "_PV"))
    
    SPV <- SPV %>%
      filter(date2 == dmda, Category == CategoryChosse) %>%
      select(-any_of(dropnames))
    
    datas<-SPV %>%
      filter(date2 == ymd(dmda)) %>%
      group_by(Category) %>%
      summarize(across(starts_with("DR0"), sum)) %>%
      pivot_longer(cols= -Category, names_pattern = "DR0(. )", values_to = "val") %>%
      mutate(name = readr::parse_number(name))
    colnames(datas)[-1]<-c("Days","Numbers")
    
    datas <- datas %>% 
      group_by(Category) %>% 
      slice((as.Date(dmda) - min(as.Date(df1$date1) [
        df1$Category == first(Category)])):max(Days) 1) %>%
      ungroup
    
    plot(Numbers ~ Days,  xlim= c(0,45), ylim= c(0,30),
         xaxs='i',data = datas,main = paste0(dmda, "-", CategoryChosse))
    
    model <- nls(Numbers ~ b1*Days^2 b2,start = list(b1 = 0,b2 = 0),data = datas, algorithm = "port")
    
    new.data <- data.frame(Days = with(datas, seq(min(Days),max(Days),len = 45)))
    new.data <- rbind(0, new.data)
    lines(new.data$Days,predict(model,newdata = new.data),lwd=2)
    coef<-coef(model)[2]
    points(0, coef, col="red",pch=19,cex = 2,xpd=TRUE)
    text(.99,coef   1,max(0, round(coef,1)), cex=1.1,pos=4,offset =1,col="black")
    
  }
  

ui <- fluidPage(
  
  ui <- shiny::navbarPage(theme = shinytheme("flatly"), collapsible = TRUE,
                          br(),
                          
                          tabPanel("",
                                   sidebarLayout(
                                     sidebarPanel(
                                       
                                       uiOutput("date"),
                                       uiOutput("mycode"),
                                       br(),
                                       
                                       
                                     ),
                                     
                                     mainPanel(
                                       tabsetPanel(
                                         tabPanel("", plotOutput("graph",width = "100%", height = "600")
                                         )
                                       ),
                                     ))
                          )))


server <- function(input, output,session) {
  
  data <- reactive(function.test())
  
  output$date <- renderUI({
    req(data())
    all_dates <- seq(as.Date('2021-01-01'), as.Date('2021-01-15'), by = "day")
    disabled <- as.Date(setdiff(all_dates, as.Date(data()$date2)), origin = "1970-01-01")
    dateInput(input = "date2", 
              label = h4("Data"),
              min = min(data()$date2),
              max = max(data()$date2),
              value = min(data()$date2),
              format = "dd-mm-yyyy",
              datesdisabled = disabled)
    
  })
  
  output$mycode <- renderUI({
    req(input$date2)
    df1 <- data()
    df2 <- df1[as.Date(df1$date2) %in% input$date2,]
    selectInput("code", label = h4("Code"),choices=unique(df2$Category))
  })
  
  output$graph <- renderPlot({
    req(input$date2,input$code)
    f1(data(),as.character(input$date2),as.character(input$code))
  })
  
}

shinyApp(ui = ui, server = server)
  • Related