I have a dataframe containing two columns I would like to explode / unnest together. One contains dates, the other contains information related to the dates.
here is what the initial df looks like:
data = [
["ABC", 2002, ["AB", "AB", "EF"], ["2002-05-06", "2002-05-07", "2002-05-12"]],
["DEF", 2002, [["CD", "EF"]], ["2002-06-12", "2002-06-13"]],
["GHI", 2002, [["JK"]], ["2002-03-02"]],
["JKL", 2002, [[]], ["2002-03-02"]],
]
df = pd.DataFrame(data, columns=["ID", "year", "list", "date_list"])
df
what I want it to like is, such that the date variables and relevant list elements are unpacked together:
data = [
["ABC", 2002, ["AB"], ["2002-05-06"]],
["ABC", 2002, ["AB"], ["2002-05-07"]],
["ABC", 2002, ["EF"], ["2002-05-12"]],
["DEF", 2002, ["CD"], ["2002-06-12"]],
["DEF", 2002, ["EF"], ["2002-06-13"]],
["GHI", 2002, [["JK"]], ["2002-03-02"]],
["JKL", 2002, [[]], ["2002-03-02"]],
]
df = pd.DataFrame(data, columns=["ID", "year", "list", "date_list"])
df
I have tried exploding both the list
and date_list
columns individually and separately, but I am unaware of a way to unnest them together in an ordered fasion. Does anyone know how to do this?
CodePudding user response:
If I understood you correctly:
extracted = df['list'].explode().to_frame().reset_index(drop=True).join(df['date_list'].explode().reset_index())
df = df[['ID', 'year']].merge(extracted[['list', 'date_list', 'index']], left_index=True, right_on='index').drop(columns=['index'])
Output:
ID year list date_list
0 ABC 2002 AB 2002-05-06
1 ABC 2002 AB 2002-05-07
2 ABC 2002 EF 2002-05-12
3 DEF 2002 CD 2002-06-12
4 DEF 2002 EF 2002-06-13
5 GHI 2002 JK 2002-03-02
6 JKL 2002 NaN 2002-03-02