I try to clean a data.frame where I have columns with text and also numbers. I would like to exclude the numbers in the example column "name" and only take the first number (without string) for the column "number".
I am using data.table and created this frame:
df <- data.frame(x=c(1,2,3,4,5,6,7,8),
name=c('Tom', 'Maria 3', 'Ina.2', 'Anna13', 'Tim2a', 'Zoé', 'Mark_1', 'Bea: 2'),
number=c('12, 13', '11/12', '3b', '12, 13', '134z', 'number 14', 'B3', '3-5'))
As described above, I would expect a cleaned table like this:
df_cleaned <- data.frame(x=c(1,2,3,4,5,6,7,8),
name=c('Tom', 'Maria', 'Ina', 'Anna', 'Tim', 'Zoé', 'Mark', 'Bea'),
number=c('12', '11', '3', '12', '134', '14', '3', '3'))
Thank you very much for your reply:)
CodePudding user response:
You can use readr::parse_number
which does exactly that.
readr::parse_number(df$number)
#[1] 12 11 3 12 134 14 3 3
Or in base R -
as.numeric(sub('.*?(\\d ).*', '\\1', df$number))
To clean up the names, you can use the regex -
df$name <- sub('([ :_.]|\\d).*', '', df$name)
#[1] "Tom" "Maria" "Ina" "Anna" "Tim" "Zoé" "Mark" "Bea"
CodePudding user response:
Does this work:
library(dplyr)
library(stringr)
df %>% mutate(name = str_extract(name, '[A-Za-z] '), number = parse_number(number))
x name number
1 1 Tom 12
2 2 Maria 11
3 3 Ina 3
4 4 Anna 12
5 5 Tim 134
6 6 Zo 14
7 7 Mark 3
8 8 Bea 3