I have a udf that can reference the status_code and returns the body.
def Api(a):
path = endpoint
headers = {'sample-Key': sample}
body = [{'text': body }]
res = None
try:
req = requests.post(path, params=params, headers=headers, json=body)
req = req.json()
dumps=json.dumps(req)
except Exception as e:
return e
if res != None and req.status_code == 200:
return json.loads(dumps)
return None
udf_Api = udf(Api)
newDF=df.withColumn("output", udf_Api(col("input")))
I can return the json.loads and get it into the dataframe. However, my problem is that I need to also persist the status_code in a separate column. So the output would look like:
--------- ----------- ----------
| input|status_code| output|
--------- ----------- ----------
|inputText| 200|outputText|
--------- ----------- ----------
So how can I return both the req.status_code and the json.loads(), but put them into separate columns in the dataframe? I thought of returning an array and then splitting it, but not sure how to do that.
CodePudding user response:
You can modify your UDF to return a dict instead of string or integer, then define the schema for output.
from pyspark.sql import functions as F
from pyspark.sql import types as T
def Api(a):
return {
'status': 200,
'data': '{"a": 1}'
}
schema = T.StructType([
T.StructField('status', T.IntegerType()),
T.StructField('data', T.StringType())
])
(df
.withColumn('output', F.udf(Api, schema)('col'))
.select('col', 'output.*')
.show()
)
# --- ------ --------
# |col|status| data|
# --- ------ --------
# | 10| 200|{"a": 1}|
# | 20| 200|{"a": 1}|
# | 30| 200|{"a": 1}|
# --- ------ --------