Lets assume I have the following Eigen::Matrix:
Eigen::MatrixXf mat(3, 4);
mat << 1.1, 2, 3, 50,
2.2, 2, 3, 50,
3.1, 2, 3, 50;
Now how can I convert every column into an std::vector<float>
I tried an adaptation of this solution typecasting Eigen::VectorXd to std::vector:
std::vector<float> vec;
vec.resize(mat.rows());
for(int col=0; col<mat.cols(); col ){
Eigen::MatrixXf::Map(&vec[0], mat.rows());
}
But that throws the following error:
n template: static_assert failed due to requirement 'Map<Eigen::Matrix<float, -1, -1, 0, -1, -1>, 0, Eigen::Stride<0, 0>>::IsVectorAtCompileTime' "YOU_TRIED_CALLING_A_VECTOR_METHOD_ON_A_MATRIX"
What is the right and most efficient solution?
CodePudding user response:
The below program shows how you can extract the first column from Eigen::Matrix into a std::vector<float>
.
Version 1: Extract only a single column at a time
int main()
{
Eigen::MatrixXf mat(3, 4);
mat << 1.1, 2, 3, 50,
2.2, 2, 3, 50,
3.1, 2, 3, 50;
std::vector<float> column1(mat.rows());
for(int j = 0; j < mat.rows(); j)
{
column1.at(j) = mat(j, 0);//this will put all the elements in the first column of Eigen::Matrix into the column3 vector
}
for(float elem: column1)
{
std::cout<<elem<<std::endl;
}
//similarly you can create columns corresponding to other columns of the Matrix. Note that you can also
//create std::vector<std::vector<float>> for storing all the rows and columns as shown in version 2 of my answer
return 0;
}
The output of version 1 is as follows:
1.1
2.2
3.1
Similarly you can extract other columns.
Note that if you want to extract all columns then you can create/use a std::vector<std::vector<float>>
where you can store all the rows and columns as shown below:
Version 2: Extract all columns into a 2D std::vector
int main()
{
Eigen::MatrixXf mat(3, 4);
mat << 1.1, 2, 3, 50,
2.2, 2, 3, 50,
3.1, 2, 3, 50;
std::vector<std::vector<float>> vec_2d(mat.rows(), std::vector<float>(mat.cols(), 0));
for(int col = 0; col < mat.cols(); col)
{
for(int row = 0; row < mat.rows(); row)
{
vec_2d.at(row).at(col) = mat(row, col);
}
}
//lets print out i.e., confirm if our vec_2d contains the columns correctly
for(int col = 0; col < mat.cols(); col)
{ std::cout<<"This is the "<<col 1<< " column"<<std::endl;
for(int row = 0; row < mat.rows(); row)
{
std::cout<<vec_2d.at(row).at(col)<<std::endl;
}
}
return 0;
}
The output of version 2 is as follows:
This is the 1 column
1.1
2.2
3.1
This is the 2 column
2
2
2
This is the 3 column
3
3
3
This is the 4 column
50
50
50
CodePudding user response:
I think the most elegant Solution would be to use Eigen::Map
. In your case you would do it like this:
Eigen::MatrixXf mat(3, 4);
mat << 1.1, 2, 3, 50,
2.2, 2, 3, 50,
3.1, 2, 3, 50;
std::vector<float> vec;
vec.resize(mat.rows());
for(int col=0; col<mat.cols(); col ){
Eigen::Map<Eigen::MatrixXf>(vec.data(), mat.rows(), 1 ) = mat.col(col); }