Home > Mobile >  Combine two columns in pandas dataframe but in specific order
Combine two columns in pandas dataframe but in specific order

Time:11-03

For example, I have a dataframe where two of the columns are "Zeroes" and "Ones" that contain only zeroes and ones, respectively. If I combine them into one column I get first all the zeroes, then all the ones.

I want to combine them in a way that I get each element from both columns, not all elements from the first column and all elements from the second column. So I don't want the result to be [0, 0, 0, 1, 1, 1], I need it to be [0, 1, 0, 1, 0, 1].

I process 100K rows of data. What is the fastest or optimal way to achieve this? Thanks in advance!

CodePudding user response:

Try:

import pandas as pd

df = pd.DataFrame({ "zeroes" : [0, 0, 0], "ones":  [1, 1, 1], "some_other" : list("abc")})
res = df[["zeroes", "ones"]].to_numpy().ravel(order="C")
print(res)

Output

[0 1 0 1 0 1]

Micro-Benchmarks

import pandas as pd
from itertools import chain
df = pd.DataFrame({ "zeroes" : [0] * 10_000, "ones":  [1] * 10_000})
%timeit df[["zeroes", "ones"]].to_numpy().ravel(order="C").tolist()
672 µs ± 8.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit [v for vs in zip(df["zeroes"], df["ones"]) for v in vs]
2.57 ms ± 54 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
%timeit list(chain.from_iterable(zip(df["zeroes"], df["ones"]))) 
2.11 ms ± 73 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

CodePudding user response:

I don't know if this is the most optimal solution but it should solve your case.

df = pd.DataFrame([[0 for x in range(10)], [1 for x in range(10)]]).T
l = [[x, y] for x, y in zip(df[0], df[1])]
l = [x for y in l for x in y]
l

CodePudding user response:

This may help you: Alternate elements of different columns using Pandas

pd.concat(
    [df1, df2], axis=1
).stack().reset_index(1, drop=True).to_frame('C').rename(index='CC{}'.format)

CodePudding user response:

You can use numpy.flatten() like below as alternative:

import numpy as np
import pandas as pd
df[["zeroes", "ones"]].to_numpy().flatten()

Benchmark (runnig on colab):

df = pd.DataFrame({ "zeroes" : [0] * 10_000_000, "ones":  [1] * 10_000_000})

%timeit df[["zeroes", "ones"]].to_numpy().flatten().tolist()
1 loop, best of 5: 320 ms per loop

%timeit df[["zeroes", "ones"]].to_numpy().ravel(order="C").tolist()
1 loop, best of 5: 322 ms per loop
  • Related