I am trying to create in df1
the column Factor
based on the dictionary df2
. However the Code
columns for mapping are not exactly the same and the dictionary only contain the Code
strings partially.
import pandas as pd
df1 = pd.DataFrame({
'Date':['2021-01-01', '2021-01-01', '2021-01-01', '2021-01-02', '2021-01-02', '2021-01-02', '2021-01-02', '2021-01-03'],
'Ratings':[9.0, 8.0, 5.0, 3.0, 2, 3, 6, 5],
'Code':['R:EST 5R', 'R:EKG EK', 'R:EKG EK', 'R:EST 5R', 'R:EKGP', 'R:EST 5R', 'R:OID_P', 'R:OID_P']})
df2 = pd.DataFrame({
'Code':['R:EST', 'R:EKG', 'R:OID'],
'Factor':[1, 1.3, 0.9]})
So far, I wasn't able to map the data frames correctly, because the columns are not exactly the same. The column Code
does not necessary start with "R:".
df1['Factor'] = df1['Code'].map(df2.set_index('Code')['Factor'])
This is how the preferred output would look like:
df3 = pd.DataFrame({
'Date':['2021-01-01', '2021-01-01', '2021-01-01', '2021-01-02', '2021-01-02', '2021-01-02', '2021-01-02', '2021-01-03'],
'Ratings':[9.0, 8.0, 5.0, 3.0, 2, 3, 6, 5],
'Code':['R:EST 5R', 'R:EKG EK', 'R:EKG EK', 'R:EST 5R', 'R:EKGP', 'R:EST 5R', 'R:OID_P', 'R:OID_P'],
'Factor':[1, 1.3, 1.3, 1, 1.3, 1, 0.9, 0.9]})
Thanks a lot!
CodePudding user response:
>>> df1['Code'].str[:5].map(df2.set_index('Code')['Factor'])
0 1.0
1 1.3
2 1.3
3 1.0
4 1.3
5 1.0
6 0.9
7 0.9
Name: Code, dtype: float64
>>> df2.Code.apply(lambda x:df1.Code.str.contains(x)).T.idxmax(axis=1).apply(lambda x:df2.Factor.iloc[x])
0 1.0
1 1.3
2 1.3
3 1.0
4 1.3
5 1.0
6 0.9
7 0.9
dtype: float64