With the following example code all columns are scaled with MinMaxScaler. How to change in order to only scale column A and column C? Ideally I want to do it by excluding column B by name.
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df = pd.DataFrame({'A':[14.00,90.20,90.95,96.27,91.21],
'B':[103.02,107.26,110.35,114.23,114.68],
'C':[3,5,4,2,3]})
df[df.columns] = scaler.fit_transform(df[df.columns])
CodePudding user response:
Take a look at pandas.Index.difference
:
scaler.fit_transform(df[df.columns.difference(['B'])])
CodePudding user response:
cols = df.columns[df.columns != 'B']
df[cols] = scaler.fit_transform(df[cols])