I have the following dataset :
df=pd.read_csv('https://raw.githubusercontent.com/michalis0/DataMining_and_MachineLearning/master/data/HR_comma_sep.csv')
I encoded salary
first with a label encoder le_salary
, and then with an ordinal encoder oe_salary
. Then I encoded department
with OneHotEncoder ohe_department
. I concanated it all and have now a concat_df
.
Now I want to do a logistic regression but with standardisation and that's where I have a problem.
Here are my values and train/test split:
X=concat_df[[ 'satisfaction_level', 'last_evaluation', 'number_project', 'average_monthly_hours', 'time_spent_company', 'work_accident', 'promotion_last_5years', ('IT',), ('RandD',), ('accounting',), ('hr',), ('management',), ('marketing',), ('product_mng',), ('sales',), ('support',), ('technical',), 'oe_salary', 'eval_spent']].values
y=concat_df["left"].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=72)
I then tried to standardize only numerical values whith the following code :
from sklearn.compose import ColumnTransformer
scaler = StandardScaler()
#select cols to standardize
Cols = ['satisfaction_level', 'last_evaluation', 'number_project', 'average_monthly_hours', 'time_spent_company', 'eval_spent']
#set up preprocessor
preprocessor = ColumnTransformer([('standard', scaler, Cols)], remainder = 'passthrough')
#fit preprocessor
X_train_std = preprocessor.fit_transform(X_train)
X_test_std = preprocessor.transform(X_test)
However I get the following error that I don't undersant since I've already standardized that before without any problems.
AttributeError Traceback (most recent call last)
/usr/local/lib/python3.7/dist-packages/sklearn/utils/__init__.py in _get_column_indices(X, key)
408 try:
--> 409 all_columns = X.columns
410 except AttributeError:
AttributeError: 'numpy.ndarray' object has no attribute 'columns'
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
3 frames
/usr/local/lib/python3.7/dist-packages/sklearn/utils/__init__.py in _get_column_indices(X, key)
410 except AttributeError:
411 raise ValueError(
--> 412 "Specifying the columns using strings is only "
413 "supported for pandas DataFrames"
414 )
ValueError: Specifying the columns using strings is only supported for pandas DataFrames
Why do I get this error and what does it mean?
CodePudding user response:
By removing the .values
to the DataFrame like so :
X=concat_df[[ 'satisfaction_level', 'last_evaluation', 'number_project', 'average_monthly_hours', 'time_spent_company', 'work_accident', 'promotion_last_5years', ('IT',), ('RandD',), ('accounting',), ('hr',), ('management',), ('marketing',), ('product_mng',), ('sales',), ('support',), ('technical',), 'oe_salary', 'eval_spent']]
y=concat_df["left"]
We should be able to keep a DataFrame format and call them with their column name.
Furthermore, to remove those warnnings about the column names, we can modify those by doing the following at the start :
concat_df.columns = ['satisfaction_level',
'last_evaluation',
'number_project',
'average_monthly_hours',
'time_spent_company',
'work_accident',
'promotion_last_5years',
'IT',
'RandD',
'accounting',
'hr',
'management',
'marketing',
'product_mng',
'sales',
'support',
'technical',
'oe_salary',
'eval_spent',
'left']
And then we can call the new columns names :
X=concat_df[['satisfaction_level',
'last_evaluation',
'number_project',
'average_monthly_hours',
'time_spent_company',
'work_accident',
'promotion_last_5years',
'IT',
'RandD',
'accounting',
'hr',
'management',
'marketing',
'product_mng',
'sales',
'support',
'technical',
'oe_salary',
'eval_spent']]]
y=concat_df["left"]