I have a dataframe with the following format
timestamp ID Col1 Col2 Col3 Col4 UsefulCol
16/11/2021 1 0.2 0.1 Col3
17/11/2021 1 0.3 0.8 Col3
17/11/2021 2 10 Col2
17/11/2021 3 0.1 2 Col4
And I want to "melt" it into this format:
timestamp ID Col Value
16/11/2021 1 Col3 0.1
17/11/2021 1 Col3 0.8
17/11/2021 2 Col2 10
17/11/2021 3 Col4 2
How would I go about this?
Input as dataframe:
from numpy import nan
df = pd.DataFrame({'timestamp': ['16/11/2021', '17/11/2021', '17/11/2021', '17/11/2021'],
'ID': [1, 1, 2, 3],
'Col1': [0.2, 0.3, nan, nan],
'Col2': [nan, nan, 10.0, nan],
'Col3': [0.1, 0.8, nan, 0.1],
'Col4': [nan, nan, nan, 2.0],
'UsefulCol': ['Col3', 'Col3', 'Col2', 'Col4']})
CodePudding user response:
Try making a column with the useful values first:
df['Value'] = df.apply(lambda x: x[x.UsefulCol], axis=1)
timestamp ID Col1 Col2 Col3 Col4 UsefulCol Value
16/11/2021 1 0.2 0.1 Col3 0.1
17/11/2021 1 0.3 0.8 Col3 0.8
17/11/2021 2 10 Col2 10
17/11/2021 3 0.1 2 Col4 2
Then, you can drop the columns you wanted to melt:
df.drop(['Col1', 'Col2', 'Col3', 'Col4], axis=1, inplace=True)
timestamp ID UsefulCol Value
16/11/2021 1 Col3 0.1
17/11/2021 1 Col3 0.8
17/11/2021 2 Col2 10
17/11/2021 3 Col4 2
Rename your columns if you need:
df.rename({'UsefulCol':'Col'}, axis=1, inplace=True)
or
df.columns = [timestamp', 'ID', 'Col', 'Value]
CodePudding user response:
Here is a vectorial solution using a bit of numpy:
import numpy as np
# select columns to pseudo-melt (this could be a manual list cols=['A', 'B', 'C'])
cols = df.filter(regex='^Col').columns
# slice the needed values (they will be on the diagonal) and keep only diagonal
df['Value'] = np.diag(df.filter(regex='^Col').loc[:, df['UsefulCol']].values)
# drop old columns
new_df = df.drop(columns=cols)
output:
timestamp ID UsefulCol Value
0 16/11/2021 1 Col3 0.1000
1 17/11/2021 1 Col3 0.8000
2 17/11/2021 2 Col2 10.0000
3 17/11/2021 3 Col4 2.0000