I would like to look at an outcome in the time prior to a change in product and after a change in product. Here is an example df:
import pandas as pd
ids = [1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2]
date = ["11/4/2020", "12/5/2020", "01/5/2021", "02/5/2020", "03/5/2020", "04/5/2020", "05/5/2020", "06/5/2020", "07/5/2020", "08/5/2020", "09/5/2020",
"01/3/2019", "02/3/2019", "03/3/2019", "04/3/2019", "05/3/2019", "06/3/2019", "07/3/2019", "08/3/2019", "09/3/2019", "10/3/2019"]
months = [0,1,2,3,4,0,1,2,3,4,5,0,1,2,3,4,0,1,2,3,4]
df = pd.DataFrame({'ids': ids,
'date': date,
'months': months
})
df
ids date months
0 1 11/4/2020 0
1 1 12/5/2020 1
2 1 01/5/2021 2
3 1 02/5/2020 3
4 1 03/5/2020 4
5 1 04/5/2020 0
6 1 05/5/2020 1
7 1 06/5/2020 2
8 1 07/5/2020 3
9 1 08/5/2020 4
10 1 09/5/2020 5
11 2 01/3/2019 0
12 2 02/3/2019 1
13 2 03/3/2019 2
14 2 04/3/2019 3
15 2 05/3/2019 4
16 2 06/3/2019 0
17 2 07/3/2019 1
18 2 08/3/2019 2
19 2 09/3/2019 3
20 2 10/3/2019 4
This is what I would like the end result to be:
ids date months new_col
0 1 11/4/2020 0 -5
1 1 12/5/2020 1 -4
2 1 01/5/2021 2 -3
3 1 02/5/2020 3 -2
4 1 03/5/2020 4 -1
5 1 04/5/2020 0 0
6 1 05/5/2020 1 1
7 1 06/5/2020 2 2
8 1 07/5/2020 3 3
9 1 08/5/2020 4 4
10 1 09/5/2020 5 5
11 2 01/3/2019 0 -5
12 2 02/3/2019 1 -4
13 2 03/3/2019 2 -3
14 2 04/3/2019 3 -2
15 2 05/3/2019 4 -1
16 2 06/3/2019 0 0
17 2 07/3/2019 1 1
18 2 08/3/2019 2 2
19 2 09/3/2019 3 3
20 2 10/3/2019 4 4
In other words I would like to add a column that finds the second instance of months = 0 for a specific ID and counts backwards from that so I can look at outcomes before that point (all the negative numbers) vs the outcomes after that point (all the positive numbers).
Is there a simple way to do this in pandas?
Thanks in advance
CodePudding user response:
def fun():
id, m = yield
curid, out = id, -6
while True:
if curid == id:
out = 1
else:
out = -5
curid = id
id, m = yield out
f = fun()
next(f)
df['new_col'] = df.apply(lambda x: f.send((x['ids'], x['months'])), axis=1)
print(df)
ids date months new_col
0 1 11/4/2020 0 -5
1 1 12/5/2020 1 -4
2 1 01/5/2021 2 -3
3 1 02/5/2020 3 -2
4 1 03/5/2020 4 -1
5 1 04/5/2020 0 0
6 1 05/5/2020 1 1
7 1 06/5/2020 2 2
8 1 07/5/2020 3 3
9 1 08/5/2020 4 4
10 1 09/5/2020 5 5
11 2 01/3/2019 0 -5
12 2 02/3/2019 1 -4
13 2 03/3/2019 2 -3
14 2 04/3/2019 3 -2
15 2 05/3/2019 4 -1
16 2 06/3/2019 0 0
17 2 07/3/2019 1 1
18 2 08/3/2019 2 2
19 2 09/3/2019 3 3
20 2 10/3/2019 4 4
CodePudding user response:
Assume there are 2 and only 2 instances of 0 per group so I don't care about ids
because:
- (id1, first 0) -> negative counter,
- (id1, second 0) -> positive counter,
- (id2, first 0) -> negative counter,
- (id2, second 0) -> positive count and so on.
Create virtual groups to know if you have to create negative or positive counter:
- odd group: negative counter
- even group: positive counter
df['new_col'] = (
df.assign(new_col=df['months'].eq(0).cumsum())
.groupby('new_col')['new_col']
.apply(lambda x: range(-len(x), 0, 1) if x.name % 2 else range(len(x)))
.explode().values
)
Output:
>>> df
ids date months new_col
0 1 11/4/2020 0 -5
1 1 12/5/2020 1 -4
2 1 01/5/2021 2 -3
3 1 02/5/2020 3 -2
4 1 03/5/2020 4 -1
5 1 04/5/2020 0 0
6 1 05/5/2020 1 1
7 1 06/5/2020 2 2
8 1 07/5/2020 3 3
9 1 08/5/2020 4 4
10 1 09/5/2020 5 5
11 2 01/3/2019 0 -5
12 2 02/3/2019 1 -4
13 2 03/3/2019 2 -3
14 2 04/3/2019 3 -2
15 2 05/3/2019 4 -1
16 2 06/3/2019 0 0
17 2 07/3/2019 1 1
18 2 08/3/2019 2 2
19 2 09/3/2019 3 3
20 2 10/3/2019 4 4