Could someone please explain to me how I rewrite this code to run faster using pools? Sorry for that question but I'm a beginner and I spent so much time trying but unfortunately I couldn't figure it out.
for i in constituents:
print(i) # print out the ticker so we know the downloading progress
prc = yf.download(i, interval="1d", start=start_date, end=end_date)
prc = pd.DataFrame(prc['Adj Close']) # select adjusted close price only
prc.columns = [i] # rename the column with the ticker of the stock
try:
df_prc = pd.concat([df_prc, prc], axis=1) # if the dataframe already exists, join the newly downloaded data to the existing table
except:
df_prc = prc # create the dataframe for the first ticker
stk = yf.Ticker(i)
try:
stk.info['floatShares']
except:
stk.info['floatShares'] = None
try:
stk.info['sharesOutstanding']
except:
stk.info['sharesOutstanding'] = None
if stk.info['floatShares']:
mcap = prc * stk.info['floatShares']
elif stk.info['sharesOutstanding']:
mcap = prc * stk.info['sharesOutstanding']
else:
mcap = prc * ((stk.info['marketCap'])/(stk.info['previousClose']))
try:
df_mcap = pd.concat([df_mcap, mcap], axis=1)
except:
df_mcap = mcap
Further, I would like to provide the code that runs befor that one I posted to clarify my question:
import yfinance as yf
import pandas as pd
start_date = "2021-01-04"
end_date = "2021-11-29"
idx = "^STOXX50E"
Index = yf.download(idx, # ticker
interval="1d", # daily frequency
start=start_date, end=end_date) # sampling period
Index = pd.DataFrame(Index['Adj Close'].rename(idx)) # select adjusted close price
page = pd.read_html('https://en.wikipedia.org/wiki/EURO_STOXX_50')
constituents = page[2]['Ticker'] # we only need tickers
constituents.pop(46) # Ticker UMG.AS is removed because otherwise the for loop produces an error
CodePudding user response:
I was able to reduce the running time from 386 seconds to 17 seconds with the following code. Note that I had to do an import of module ssl
and issue ssl._create_default_https_context = ssl._create_unverified_context
to overcome an SSL certificate error I was getting from the pd.read_html()
method call.
import yfinance as yf
import pandas as pd
from multiprocessing.pool import ThreadPool
from functools import partial
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
start_date = "2021-01-04"
end_date = "2021-11-29"
def process_constituent(data, constituent):
prc = pd.DataFrame(data[constituent]['Adj Close']) # select adjusted close price only
prc.columns = [constituent] # rename the column with the ticker of the stock
stk = yf.Ticker(constituent)
try:
stk.info['floatShares']
except:
stk.info['floatShares'] = None
try:
stk.info['sharesOutstanding']
except:
stk.info['sharesOutstanding'] = None
if stk.info['floatShares']:
mcap = prc * stk.info['floatShares']
elif stk.info['sharesOutstanding']:
mcap = prc * stk.info['sharesOutstanding']
else:
mcap = prc * ((stk.info['marketCap'])/(stk.info['previousClose']))
return mcap
def process_constituents(constituents):
# Download all the tickers:
data = yf.download(
tickers = ' '.join(constituents),
interval='1d',
start = start_date,
end = end_date,
group_by = 'ticker',
adjust=False,
threads = True,
proxy = None
)
pool = ThreadPool(len(constituents))
for idx, mcap in enumerate(pool.imap(partial(process_constituent, data), constituents)):
if idx == 0:
df_mcap = mcap
else:
df_mcap = pd.concat([df_mcap, mcap], axis=1)
return df_mcap
def main():
idx = "^STOXX50E"
Index = yf.download(idx, # ticker
interval="1d", # daily frequency
start=start_date, end=end_date) # sampling period
Index = pd.DataFrame(Index['Adj Close'].rename(idx)) # select adjusted close price
page = pd.read_html('https://en.wikipedia.org/wiki/EURO_STOXX_50')
constituents = page[2]['Ticker'] # we only need tickers
constituents.pop(46) # Ticker UMG.AS is removed because otherwise the for loop produces an error
df_mcap = process_constituents(constituents)
print(df_mcap)
if __name__ == '__main__':
main()
Prints:
[*********************100%***********************] 1 of 1 completed
[*********************100%***********************] 49 of 49 completed
ADS.DE ADYEN.AS AD.AS AI.PA ... TTE.PA DG.PA VOW.DE VNA.DE
Date ...
2021-01-04 5.083322e 10 4.880933e 10 2.414267e 10 6.200227e 10 ... 8.326552e 10 3.746300e 10 3.842743e 10 3.322534e 10
2021-01-05 4.983515e 10 4.800875e 10 2.403104e 10 6.134340e 10 ... 8.545638e 10 3.682896e 10 3.849667e 10 3.338207e 10
2021-01-06 5.019652e 10 4.548888e 10 2.411223e 10 6.147971e 10 ... 8.921219e 10 3.824197e 10 3.886594e 10 3.203872e 10
2021-01-07 4.964585e 10 4.500328e 10 2.407163e 10 6.195684e 10 ... 9.018724e 10 3.830537e 10 3.946601e 10 3.183722e 10
2021-01-08 5.078160e 10 4.610573e 10 2.400059e 10 6.232034e 10 ... 9.024743e 10 3.879449e 10 3.893518e 10 3.225142e 10
... ... ... ... ... ... ... ... ... ...
2021-11-22 4.851034e 10 6.454539e 10 3.178177e 10 7.108912e 10 ... 1.073903e 11 4.175263e 10 6.518791e 10 2.937961e 10
2021-11-23 4.727562e 10 6.298360e 10 3.187473e 10 7.017166e 10 ... 1.086315e 11 4.224230e 10 6.532881e 10 2.843048e 10
2021-11-24 4.667566e 10 6.206490e 10 3.153388e 10 7.028287e 10 ... 1.092141e 11 4.271798e 10 6.326233e 10 2.985586e 10
2021-11-25 4.659740e 10 6.453227e 10 3.159068e 10 7.013459e 10 ... 1.091381e 11 4.279726e 10 6.298054e 10 3.005144e 10
2021-11-26 4.405841e 10 6.358732e 10 3.132214e 10 6.882791e 10 ... 1.026661e 11 3.918302e 10 6.072620e 10 2.859604e 10
[233 rows x 49 columns]
CodePudding user response:
import yfinance as yf
import pandas as pd
from multiprocessing.pool import ThreadPool
from functools import partial
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
start_date = "2021-01-04"
end_date = "2021-11-29"
# download data
idx = "^STOXX50E"
Index = yf.download(idx, # ticker
interval="1d", # daily frequency
start=start_date, end=end_date) # sampling period
Index = pd.DataFrame(Index['Adj Close'].rename(idx)) # select adjusted close price
page = pd.read_html('https://en.wikipedia.org/wiki/EURO_STOXX_50')
constituents = page[2]['Ticker'] # we only need tickers
constituents.pop(46) # Ticker UMG.AS is removed because otherwise the for loop produces an error
data = yf.download(
tickers = ' '.join(constituents),
interval='1d',
start = start_date,
end = end_date,
group_by = 'ticker',
adjust=False,
threads = True,
proxy = None
)
def process_prc(data, constituent):
prc = pd.DataFrame(data[constituent]['Adj Close']) # select adjusted close price only
prc.columns = [constituent] # rename the column with the ticker of the stock
return prc
def process_constituent(data, constituent):
prc = pd.DataFrame(data[constituent]['Adj Close']) # select adjusted close price only
prc.columns = [constituent] # rename the column with the ticker of the stock
stk = yf.Ticker(constituent)
try:
stk.info['floatShares']
except:
stk.info['floatShares'] = None
try:
stk.info['sharesOutstanding']
except:
stk.info['sharesOutstanding'] = None
if stk.info['floatShares']:
mcap = prc * stk.info['floatShares']
elif stk.info['sharesOutstanding']:
mcap = prc * stk.info['sharesOutstanding']
else:
mcap = prc * ((stk.info['marketCap'])/(stk.info['previousClose']))
return mcap
def process_dfprc(constituents):
pool = ThreadPool(len(constituents))
for idx, prc in enumerate(pool.imap(partial(process_prc, data), constituents)):
try:
df_prc = pd.concat([df_prc, prc], axis=1) # if the dataframe already exists, join the newly downloaded data to the existing table
except:
df_prc = prc # create the dataframe for the first ticker
return df_prc
def process_constituents(constituents):
# Download all the tickers:
pool = ThreadPool(len(constituents))
for idx, mcap in enumerate(pool.imap(partial(process_constituent, data), constituents)):
#if idx == 0:
# df_mcap = mcap
#else:
# df_mcap = pd.concat([df_mcap, mcap], axis=1)
try:
df_mcap = pd.concat([df_mcap, mcap], axis=1)
except:
df_mcap = mcap
return df_mcap
page = pd.read_html('https://en.wikipedia.org/wiki/EURO_STOXX_50')
constituents = page[2]['Ticker'] # we only need tickers
constituents.pop(46) # Ticker UMG.AS is removed because otherwise the for loop produces an error
calculating df_mcap:
if __name__ == '__main__':
df_mcap = process_constituents(constituents)
df_mcap
print:
ADS.DE ADYEN.AS AD.AS AI.PA AIR.PA ALV.DE ABI.BR ASML.AS CS.PA BAS.DE ... SAF.PA SAN.PA SAP.DE SU.PA SIE.DE STLA.MI TTE.PA DG.PA VOW.DE VNA.DE
Date
2021-01-04 5.083322e 10 4.880933e 10 2.414267e 10 6.200227e 10 6.001130e 10 7.936595e 10 5.306992e 10 1.647683e 11 3.507867e 10 5.679746e 10 ... 4.005571e 10 8.460465e 10 1.080643e 11 6.363292e 10 9.197665e 10 2.174885e 10 8.763420e 10 3.746300e 10 3.842743e 10 3.316382e 10
2021-01-05 4.983515e 10 4.800875e 10 2.403104e 10 6.134340e 10 5.997124e 10 7.855080e 10 5.304209e 10 1.650319e 11 3.506423e 10 5.636858e 10 ... 4.014193e 10 8.459394e 10 1.077770e 11 6.303187e 10 9.178897e 10 2.169038e 10 8.994003e 10 3.682896e 10 3.849667e 10 3.332026e 10
2021-01-06 5.019652e 10 4.548888e 10 2.411223e 10 6.147971e 10 6.019823e 10 8.263458e 10 5.451703e 10 1.633893e 11 3.656208e 10 5.896818e 10 ... 4.010744e 10 8.407989e 10 1.082285e 11 6.478275e 10 9.530789e 10 2.123436e 10 9.389289e 10 3.824197e 10 3.886594e 10 3.197940e 10
2021-01-07 4.964585e 10 4.500328e 10 2.407163e 10 6.195684e 10 5.983105e 10 8.195529e 10 5.417381e 10 1.638151e 11 3.678766e 10 5.987848e 10 ... 3.993501e 10 8.323385e 10 1.072435e 11 6.611552e 10 9.720029e 10 2.161438e 10 9.491911e 10 3.830537e 10 3.946601e 10 3.177828e 10
2021-01-08 5.078160e 10 4.610573e 10 2.400059e 10 6.232034e 10 6.015150e 10 8.221501e 10 5.367288e 10 1.687430e 11 3.675157e 10 6.002728e 10 ... 4.012468e 10 8.437975e 10 1.089467e 11 6.682110e 10 9.696569e 10 2.121390e 10 9.498246e 10 3.879449e 10 3.893518e 10 3.219170e 10
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2021-11-22 4.851034e 10 6.454539e 10 3.178177e 10 7.108912e 10 7.262242e 10 8.481195e 10 4.905974e 10 3.047505e 11 4.871214e 10 5.686775e 10 ... 3.862038e 10 9.936060e 10 1.269160e 11 8.638617e 10 1.251472e 11 3.187450e 10 1.074238e 11 4.175263e 10 6.518791e 10 2.937961e 10
2021-11-23 4.727562e 10 6.298360e 10 3.187473e 10 7.017166e 10 7.361048e 10 8.489549e 10 4.868553e 10 2.879491e 11 4.890396e 10 5.780438e 10 ... 3.883494e 10 9.827092e 10 1.247044e 11 8.521374e 10 1.230764e 11 3.105655e 10 1.086654e 11 4.224230e 10 6.532881e 10 2.843048e 10
2021-11-24 4.667566e 10 6.206490e 10 3.153388e 10 7.028287e 10 7.441161e 10 8.483284e 10 4.900361e 10 2.891317e 11 4.899028e 10 5.683102e 10 ... 3.892492e 10 9.708117e 10 1.240785e 11 8.322063e 10 1.219527e 11 3.068774e 10 1.092482e 11 4.271798e 10 6.326233e 10 2.985586e 10
2021-11-25 4.659740e 10 6.453227e 10 3.159068e 10 7.013459e 10 7.494570e 10 8.464487e 10 5.084663e 10 2.899473e 11 4.885600e 10 5.657391e 10 ... 3.898721e 10 9.634731e 10 1.249965e 11 8.351906e 10 1.232691e 11 3.050516e 10 1.091722e 11 4.279726e 10 6.298054e 10 3.005144e 10
2021-11-26 4.405841e 10 6.358732e 10 3.132214e 10 6.882791e 10 6.633355e 10 7.996257e 10 4.789032e 10 2.795891e 11 4.646787e 10 5.317635e 10 ... 3.498675e 10 9.452378e 10 1.201978e 11 8.077986e 10 1.165751e 11 2.842012e 10 1.026981e 11 3.918302e 10 6.072620e 10 2.859604e 10
233 rows × 49 columns
calculating df_prc:
if __name__ == '__main__':
df_prc = process_dfprc(constituents)
df_prc
print:
ADS.DE ADYEN.AS AD.AS AI.PA AIR.PA ALV.DE ABI.BR ASML.AS CS.PA BAS.DE ... SAF.PA SAN.PA SAP.DE SU.PA SIE.DE STLA.MI TTE.PA DG.PA VOW.DE VNA.DE
Date
2021-01-04 292.307343 1859.5 23.374092 133.809341 89.889999 190.011627 56.726482 404.039764 18.287489 61.853455 ... 115.747612 76.089233 103.588997 119.404495 114.593018 11.912073 34.584999 80.331764 163.641632 57.650417
2021-01-05 286.568085 1829.0 23.266014 132.387405 89.830002 188.060059 56.696735 404.686218 18.279963 61.386387 ... 115.996742 76.079597 103.313599 118.276649 114.359184 11.880051 35.494999 78.972191 163.936478 57.922352
2021-01-06 288.646088 1733.0 23.344616 132.681595 90.169998 197.837112 58.273296 400.658264 19.060837 64.217407 ... 115.897095 75.617287 103.746368 121.562111 118.743378 11.630281 37.055000 82.002113 165.509003 55.591476
2021-01-07 285.479584 1714.5 23.305313 133.711288 89.620003 196.210800 57.906425 401.702545 19.178438 65.208740 ... 115.398827 74.856400 102.802139 124.062988 121.101105 11.838422 37.459999 82.138069 168.064377 55.241844
2021-01-08 292.010498 1756.5 23.236538 134.495789 90.099998 196.832611 57.370987 413.786438 19.159622 65.370781 ... 115.946915 75.886971 104.434860 125.386978 120.808823 11.619075 37.485001 83.186890 165.803864 55.960529
... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ...
2021-11-22 278.950012 2459.0 30.770000 153.419998 108.779999 203.050003 52.439999 747.299988 25.395000 61.930000 ... 111.599998 89.360001 121.660004 162.100006 155.919998 17.458000 42.395000 89.529999 277.600006 51.072109
2021-11-23 271.850006 2399.5 30.860001 151.440002 110.260002 203.250000 52.040001 706.099976 25.495001 62.950001 ... 112.220001 88.379997 119.540001 159.899994 153.339996 17.010000 42.884998 90.580002 278.200012 49.422203
2021-11-24 268.399994 2364.5 30.530001 151.679993 111.459999 203.100006 52.380001 709.000000 25.540001 61.889999 ... 112.480003 87.309998 118.940002 156.160004 151.940002 16.808001 43.115002 91.599998 269.399994 51.900002
2021-11-25 267.950012 2458.5 30.584999 151.360001 112.260002 202.649994 54.349998 711.000000 25.469999 61.610001 ... 112.660004 86.650002 119.820000 156.720001 153.580002 16.708000 43.084999 91.769997 268.200012 52.240002
2021-11-26 253.350006 2422.5 30.325001 148.539993 99.360001 191.440002 51.189999 685.599976 24.225000 57.910000 ... 101.099998 85.010002 115.220001 151.580002 145.240005 15.566000 40.529999 84.019997 258.600006 49.709999
233 rows × 49 columns