Here's my docker file,
FROM ubuntu:20.04
ARG DEBIAN_FRONTEND=noninteractive
RUN apt update && apt upgrade -y
RUN apt install -y -q software-properties-common
RUN apt install -y -q build-essential python3-pip python3-dev
RUN apt-get install -y gcc make apt-transport-https ca-certificates build-essential
RUN apt-get install -y curl autoconf automake libtool pkg-config git libreoffice wget
RUN apt-get install -y g
RUN apt-get install -y autoconf automake libtool
RUN apt-get install -y pkg-config
RUN apt-get install -y libpng-dev
RUN apt-get install -y libjpeg8-dev
RUN apt-get install -y libtiff5-dev
RUN apt-get install -y zlib1g-dev
RUN apt-get install -y libleptonica-dev
RUN apt-get install -y libicu-dev libpango1.0-dev libcairo2-dev
# python dependencies
RUN pip3 install -U pip setuptools wheel
RUN pip3 install gunicorn uvloop httptools dvc[s3]
RUN pip3 install nltk
RUN python3 -c "import nltk;nltk.download('stopwords')"
# copy required files
RUN bash -c 'mkdir -p /app/{app,models,requirements}'
COPY ./config.yaml /app
COPY ./models /app/models
COPY ./requirements /app/requirements
COPY ./app /app/app
# tensorflow serving for models
RUN echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | tee /etc/apt/sources.list.d/tensorflow-serving.list && \
curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | apt-key add -
RUN apt-get update && apt-get install tensorflow-model-server
RUN tensorflow_model_server --port=8500 --rest_api_port=8501 --model_config_file=/app/models/model.conf --model_base_path=/app/models &
ENTRYPOINT /usr/local/bin/gunicorn \
-b 0.0.0.0:80 \
-w 1 \
-k uvicorn.workers.UvicornWorker app.main:app \
--timeout 120 \
--chdir /app \
--log-level 'info' \
--error-logfile '-'\
--access-logfile '-'
No matter what I do this below line is not executing while running docker image,
RUN tensorflow_model_server --port=8500 --rest_api_port=8501 --model_config_file=/app/models/model.conf --model_base_path=/app/models &
Why is that?how can I run that above command in background and go to entrypoint in docker file. Any help is appreciated.
CodePudding user response:
You should be able to create a separate Dockerfile that only runs the TensorFlow server:
FROM ubuntu:20.04
# Install the server
RUN echo "deb [arch=amd64] http://storage.googleapis.com/tensorflow-serving-apt stable tensorflow-model-server tensorflow-model-server-universal" | tee /etc/apt/sources.list.d/tensorflow-serving.list \
&& curl https://storage.googleapis.com/tensorflow-serving-apt/tensorflow-serving.release.pub.gpg | apt-key add - \
&& apt-get update \
&& DEBIAN_FRONTEND=noninteractive \
apt-get install --no-install-recommends --assume-yes \
tensorflow-model-server
# Copy our local models into the image
COPY ./models /models
# Make the server be the main container command
CMD tensorflow_model_server --port=8500 --rest_api_port=8501 --model_config_file=/models/model.conf --model_base_path=/models
Then you can remove the similar lines from your main application's Dockerfile.
Having done this, you can set up a Docker Compose setup that launches both containers:
version: '3.8'
services:
application:
build: .
ports: ['8000:80']
environment:
- TENSORFLOW_URL=http://tf:8500
tf:
build:
context: .
dockerfile: Dockerfile.tensorflow
# ports: ['8500:8500', '8501:8501']
Your application will need to know to look for that os.environ['TENSORFLOW_URL']
. Now you have two containers, and each has its CMD
to run a single foreground process.
At a lower level, a Docker image doesn't include any running processes; think of it like a tar file plus a command line to run. Anything you start in the background in a RUN
command will get terminated as soon as that RUN
command completes.
CodePudding user response:
Why is that?
Because your docker container is configured to run /usr/local/bin/gunicorn
, as defined by the ENTRYPOINT
instruction.
how can I run that above command in background and go to entrypoint in docker file.
The standard way to do this is to write a wrapper script which executes all programs you need. So for this example, something like run.sh
:
#!/bin/bash
# Start tensorflow server
tensorflow_model_server --port=8500 --rest_api_port=8501 --model_config_file=/app/models/model.conf --model_base_path=/app/models &
# Start gunicorn
/usr/local/bin/gunicorn \
-b 0.0.0.0:80 \
-w 1 \
-k uvicorn.workers.UvicornWorker app.main:app \
--timeout 120 \
--chdir /app \
--log-level 'info' \
--error-logfile '-'\
--access-logfile '-'
Then in the Dockerfile:
ADD run.sh /usr/local/bin/run.sh
RUN chmod x /usr/local/bin/run.sh
ENTRYPOINT /usr/local/bin/run.sh