I have the following dataframe:
df = pd.DataFrame({
'a': [0.1, 0.5, 0.1, 0.3],
'b': [0.2, 0.4, 0.2, 0.2],
'c': [0.3, 0.2, 0.4, 0.1],
'd': [0.1, 0.1, 0.1, 0.7],
'e': [0.2, 0.1, 0.3, 0.4],
'f': [0.7, 0.1, 0.1, 0.1]}
)
I want to get the mean of each column on a rolling basis (let's say rolling(1).mean()) and then get the 95% confidence interval for each entry CI = x - z*s/sqrt(n), where x is the rolling average, z is confidence level value, s is the rolling standard deviation (let's say rolling(1).stdev), and n is the number of entries in the column.
Can this be done pythonically without loops?
Thank you.
CodePudding user response:
IIUC, try:
WINDOW = 2
lower_bound = df.rolling(WINDOW).mean() - 1.96*df.rolling(WINDOW).std()
upper_bound = df.rolling(WINDOW).mean() 1.96*df.rolling(WINDOW).std()
output = lower_bound.join(upper_bound, lsuffix="_lower", rsuffix="_upper").sort_index(axis=1)
>>> output
a_lower a_upper b_lower ... e_upper f_lower f_upper
0 NaN NaN NaN ... NaN NaN NaN
1 -0.254372 0.854372 0.022814 ... 0.288593 -0.431558 1.231558
2 -0.254372 0.854372 0.022814 ... 0.477186 0.100000 0.100000
3 -0.077186 0.477186 0.200000 ... 0.488593 0.100000 0.100000
[4 rows x 12 columns]