I have age columns like so that are dummy encoded. How can transform these columns to one column using dplyr?
Input:
age_0-10 age_11-20 age_21-30 age_31-40 age_41-50 age_51-60 gender
1 0 1 0 0 0 0 0
2 0 0 1 0 0 0 1
3 0 0 0 1 0 0 0
4 0 1 0 0 0 0 1
5 0 0 0 0 0 1 1
Expected Output:
age gender
1 11-20 0
2 21-30 1
3 31-40 0
4 11-20 1
5 51-60 1
CodePudding user response:
A possible solution, now, thanks to @Adam's comment, with names_prefix
:
library(tidyverse)
df <- data.frame(
check.names = FALSE,
`age_0-10` = c(0L, 0L, 0L, 0L, 0L),
`age_11-20` = c(1L, 0L, 0L, 1L, 0L),
`age_21-30` = c(0L, 1L, 0L, 0L, 0L),
`age_31-40` = c(0L, 0L, 1L, 0L, 0L),
`age_41-50` = c(0L, 0L, 0L, 0L, 0L),
`age_51-60` = c(0L, 0L, 0L, 0L, 1L),
gender = c(0L, 1L, 0L, 1L, 1L)
)
df %>%
pivot_longer(col=starts_with("age"), names_to="age", names_prefix="age_") %>%
filter(value==1) %>%
select(age, gender, -value)
#> # A tibble: 5 × 2
#> age gender
#> <chr> <int>
#> 1 11-20 0
#> 2 21-30 1
#> 3 31-40 0
#> 4 11-20 1
#> 5 51-60 1
CodePudding user response:
Here is a way in dplyr
using c_across()
.
library(dplyr)
library(stringr)
df %>%
rowwise() %>%
mutate(age = str_remove(names(.)[which(c_across(starts_with("age")) == 1)], "^age_")) %>%
ungroup() %>%
select(age, gender)
# # A tibble: 5 x 2
# age gender
# <chr> <int>
# 1 11-20 0
# 2 21-30 1
# 3 31-40 0
# 4 11-20 1
# 5 51-60 1
CodePudding user response:
Try the base R code below using max.col
cbind(
age = head(names(df), -1)[max.col(df[-ncol(df)])],
df[ncol(df)]
)
which gives
age gender
1 age_11-20 0
2 age_21-30 1
3 age_31-40 0
4 age_11-20 1
5 age_51-60 1