I would like to filter data frame using numeric vector. I am applying function below:
test_data <- exp_data[exp_data$Size_Change %in% vec_data,]
That's how example data looks like:
dput(exp_data)
structure(list(Name = c("Mark", "Greg", "Tomas", "Morka", "Pekka",
"Robert", "Tim", "Tom", "Bobby", "Terka"), Mode = c(1, 2, NA,
4, NA, 3, NA, 1, NA, 3), Change = structure(c(6L, 2L, 4L, 5L,
7L, 7L, 7L, 8L, 3L, 1L), .Label = c("D[ 58], I[ 12][ 385]", "C[ 58], K[ 1206]",
"C[ 58], P[ 2074]", "C[ 58], K[ 2172]", "C[ 58], K[ 259]", "C[ 58], K[ 2665]",
"C[ 58], T[ 385]", "C[ 58], C[ 600]"), class = "factor"), Size = c(1335.261,
697.356, 1251.603, 920.43, 492.236, 393.991, 492.239, 727.696,
1218.933, 495.237), Place = c(3L, 4L, 3L, 2L, 4L, 5L, 4L, 3L,
3L, 4L), Size_Change = c(4004, 2786, 3753, 1840, 1966, 1966,
1966, 2181, 3655, 1978)), row.names = 2049:2058, class = "data.frame")
and vector used for filtering:
dput(vec_data)
c(4003, 2785, 954, 1129, 4013, 756, 1852, 2424, 1954, 246, 147,
234, 562, 1617, 2180, 888, 1176)
I mentioned about tolerance because vec_data
is not very precise and I am expecting 1/-1 difference in numbers and after applying function it will not filter rows with such difference. It may also happen that difference will be 12/-12 or 24/-24. Can I somehow take it into account while filtering ?
Of course probably solution is to do smth like that (vec_data 1) / (vec_data -1) / (vec_data 12), etc. and do couple of filtering attempts and maybe finally rbind outputs of all but I am looking for more "elegant" way. It would also be great if there could be a column added which will indicate how the row was filtered if it was an exact number from vec_data
or it was modified by 1, 12, -24 or whatever. Please, take into account that the combination of 1/-1 with any other modification is also possible. Additional column is not necessary if it makes it too complicated.
CodePudding user response:
One option could be (tolerance = 1):
df %>%
filter(sapply(Size_Change, function(x) any(abs(x - vec) %in% 0:1)))
Name Mode Change Size Place Size_Change
1 Mark 1 C[ 58], K[ 2665] 1335.261 3 4004
2 Greg 2 C[ 58], K[ 1206] 697.356 4 2786
3 Tom 1 C[ 58], C[ 600] 727.696 3 2181
Tolerance = 14:
df %>%
filter(sapply(Size_Change, function(x) any(abs(x - vec) %in% 0:14)))
Name Mode Change Size Place Size_Change
1 Mark 1 C[ 58], K[ 2665] 1335.261 3 4004
2 Greg 2 C[ 58], K[ 1206] 697.356 4 2786
3 Morka 4 C[ 58], K[ 259] 920.430 2 1840
4 Pekka NA C[ 58], T[ 385] 492.236 4 1966
5 Robert 3 C[ 58], T[ 385] 393.991 5 1966
6 Tim NA C[ 58], T[ 385] 492.239 4 1966
7 Tom 1 C[ 58], C[ 600] 727.696 3 2181
The same logic with rowwise()
:
df %>%
rowwise() %>%
filter(any(abs(Size_Change - vec) %in% 0:1))
CodePudding user response:
The most obvious methodology is to filter based on inequality rather than exact matched (always recommended when comparing numeric [not integers])
comp <- function(x, yvec, tolerance = 1){
sapply(x, \(xi){any(abs(xi - yvec) <= tolerance)})
}
exp_data[comp(exp_data$Size_Change, vec_data),]
Name Mode Change Size Place Size_Change
2049 Mark 1 C[ 58], K[ 2665] 1335.261 3 4004
2050 Greg 2 C[ 58], K[ 1206] 697.356 4 2786
2056 Tom 1 C[ 58], C[ 600] 727.696 3 2181
# Tolerance = 2
# exp_data[comp(exp_data$Size_Change, vec_data, 2),]
CodePudding user response:
What about using a tol
erance function.
tol <- \(x, tol=1L) sapply(seq(-tol, tol, 1L), \(i) sweep(as.matrix(x), 1L, i))
exp_data[exp_data$Size_Change %in% tol(vec_data), ]
# Name Mode Change Size Place Size_Change
# 2049 Mark 1 C[ 58], K[ 2665] 1335.261 3 4004
# 2050 Greg 2 C[ 58], K[ 1206] 697.356 4 2786
# 2056 Tom 1 C[ 58], C[ 600] 727.696 3 2181
It defaults to tolerance ±1, if we want ±24 we may define it in the argument:
exp_data[exp_data$Size_Change %in% tol(vec_data, 24L), ]
# Name Mode Change Size Place Size_Change
# 2049 Mark 1 C[ 58], K[ 2665] 1335.261 3 4004
# 2050 Greg 2 C[ 58], K[ 1206] 697.356 4 2786
# 2052 Morka 4 C[ 58], K[ 259] 920.430 2 1840
# 2053 Pekka NA C[ 58], T[ 385] 492.236 4 1966
# 2054 Robert 3 C[ 58], T[ 385] 393.991 5 1966
# 2055 Tim NA C[ 58], T[ 385] 492.239 4 1966
# 2056 Tom 1 C[ 58], C[ 600] 727.696 3 2181
# 2058 Terka 3 D[ 58], I[ 12][ 385] 495.237 4 1978
I you are wondering about the L
in 24L
, it is integer notation, you may also use tol=24
without any problems.
Note: R version 4.1.2 (2021-11-01)