I would like to make a brief condition in the code below. Note that I have as input data dmda<-"2021-07-01"
, CategoryChosse<-"FDE"
, DTest<-"0"
. If you run the code up to med
, you will notice that in med
there is no line with DTest="0"
. As you can see in Dx
I'm using dates before date1
(28/06) to do the analyses, notice that I don't have any DTT = "0"
in days before date1
, so in med
I don't have anything.
Code to obtainmed
library(dplyr)
library(tidyverse)
library(lubridate)
df1 <- structure(
list(date1= c("2021-06-28","2021-06-28","2021-06-28","2021-06-28"),
date2 = c("2021-06-23","2021-06-24","2021-06-30","2021-07-01"),
DTT= c("Hol","Hol","Hol",0),
Week= c("Wednesday","Thursday","Wednesday","Thursday"),
Category = c("ABC","FDE","ABC","FDE"),
DR1 = c(4,1,1,2),
DR01 = c(4,1,2,3), DR02= c(4,2,0,2),DR03= c(9,5,0,1),
DR04 = c(5,4,3,2),DR05 = c(5,4,0,2)),
class = "data.frame", row.names = c(NA, -4L))
dmda<-"2021-07-01"
CategoryChosse<-"FDE"
DTest<-"0"
Dx<-subset(df1,df1$date2<df1$date1)
x<-Dx %>% select(starts_with("DR0"))
x<-cbind(Dx, setNames(Dx$DR1 - x, paste0(names(x), "_PV")))
PV<-select(x, date2,Week, Category, DTT, DR1, ends_with("PV"))
med<-PV %>%
group_by(Category,Week,DTT) %>%
summarize(across(ends_with("PV"), median))
> med
# A tibble: 2 x 8
# Groups: Category, Week [2]
Category Week DTT DR01_PV DR02_PV DR03_PV DR04_PV DR05_PV
<chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
1 ABC Wednesday Hol 0 0 -5 -1 -1
2 FDE Thursday Hol 0 -1 -4 -3 -3
From there, I would like to make two conditions to generate a variable called SPV
If I have Dtype="0"
in med
do:
SPV<-df1%>%
inner_join(med, by = c('Category', 'Week','DTT')) %>%
mutate(across(matches("^DR0\\d $"), ~.x
get(paste0(cur_column(), '_PV')),
.names = '{col}_{col}_PV')) %>%
select(date1:Category, DR01_DR01_PV:last_col())
SPV <- SPV %>%
filter(date2 == dmda, Category == CategoryChosse, DTT==DTest)
If I don't have Dtype="0"
in med
do:
SPV<-df1%>%
inner_join(med, by = c('Category', 'Week')) %>%
mutate(across(matches("^DR0\\d $"), ~.x
get(paste0(cur_column(), '_PV')),
.names = '{col}_{col}_PV')) %>%
select(date1:Category, DR01_DR01_PV:last_col())
SPV <- SPV %>%
filter(date2 == dmda, Category == CategoryChosse)
CodePudding user response:
Based on the condition, an if/else
expression can be used
if(any(med$DTT == DTest & med$Category== CategoryChosse, na.rm = TRUE)) {
SPV<-df1%>%
inner_join(med, by = c('Category', 'Week','DTT')) %>%
mutate(across(matches("^DR0\\d $"), ~.x
get(paste0(cur_column(), '_PV')),
.names = '{col}_{col}_PV')) %>%
select(date1:Category, DR01_DR01_PV:last_col())
SPV <- SPV %>%
filter(date2 == dmda, Category == CategoryChosse, DTT==DTest)
} else {
SPV <- df1%>%
inner_join(med, by = c('Category', 'Week')) %>%
mutate(across(matches("^DR0\\d $"), ~.x
get(paste0(cur_column(), '_PV')),
.names = '{col}_{col}_PV')) %>%
select(date1:Category, DR01_DR01_PV:last_col())
SPV <- SPV %>%
filter(date2 == dmda, Category == CategoryChosse)
}