I try to create mask of numpy.array based on list of tuples. Here is my solution that produces expected result:
import numpy as np
filter_vals = [(1, 1, 0), (0, 0, 1), (0, 1, 0)]
data = np.array([
[[0, 0, 0], [1, 1, 0], [1, 1, 1]],
[[1, 0, 0], [0, 1, 0], [0, 0, 1]],
[[1, 1, 0], [0, 1, 1], [1, 0, 1]],
])
mask = np.array([], dtype=bool)
for f_val in filter_vals:
if mask.size == 0:
mask = (data == f_val).all(-1)
else:
mask = mask | (data == f_val).all(-1)
Output/mask:
array([[False, True, False],
[False, True, True],
[ True, False, False]]
Problem is that with bigger data
array and increasing number of tuples in filter_vals
, it is getting slower.
It there any better solution? I tried to use np.isin(data, filter_vals)
, but it does not provide result I need.
CodePudding user response:
A classical approach using broadcasting would be:
*A, B = data.shape
(data.reshape((-1,B)) == np.array(filter_vals)[:,None]).all(-1).any(0).reshape(A)
This will however be memory expensive. So applicability really depends on your use case.
output:
array([[False, True, False],
[False, True, True],
[ True, False, False]])