I have a huge df
that looks like this:
date | stock1 | stock2 | stock3 | stock4 | stock5 | stock6 | stock7 | stock8 | stock9 | stock10 |
---|---|---|---|---|---|---|---|---|---|---|
10/20 | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 0.9 |
11/20 | 0.8 | 0.9 | 0.3 | 0.4 | 0.3 | 0.5 | 0.3 | 0.2 | 0.4 | 0.1 |
12/20 | 0.3 | 0.6 | 0.9 | 0.5 | 0.6 | 0.7 | 0.8 | 0.7 | 0.9 | 0.1 |
I want to find, for each row, the 20% higher values of stocks and the 20% lower. The output should be:
date | higher | lower |
---|---|---|
10/20 | stock9, stock 10 | stock1, stock 2 |
11/20 | stock1, stock 2 | stock8, stock 10 |
12/20 | stock3, stock 9 | stock1, stock 10 |
I do not need to have the comma between the values above, could be one below the other.
I have tried df= df.stack()
for stacking and later rank the values inside the columns, but I do not know how to proceed.
CodePudding user response:
If you have Python >=3.8, you can do it with a walrus operator:
size = int(0.2 * df.shape[1])
s = df.set_index('date').apply(lambda x: (', '.join((d := x.sort_values(ascending=False).index.tolist())[:size]),
', '.join(d[-size:])), axis=1)
out = pd.DataFrame(s.tolist(), index=s.index, columns=['higher','lower']).reset_index()
Output:
date higher lower
0 10/20 stock9, stock10 stock2, stock1
1 11/20 stock2, stock1 stock8, stock10
2 12/20 stock3, stock9 stock1, stock10
CodePudding user response:
Try with nlargest
and nsmallest
:
df = df.set_index("date")
n = round(len(df.columns)*0.2) #number of stocks in the top/bottom 20%
output = pd.DataFrame()
output["higher"] = df.apply(lambda x: x.nlargest(n).index.tolist(), axis=1)
output["lower"] = df.apply(lambda x: x.nsmallest(n).index.tolist(), axis=1)
>>> output
higher lower
date
10/20 [stock9, stock10] [stock1, stock2]
11/20 [stock2, stock1] [stock10, stock8]
12/20 [stock3, stock9] [stock10, stock1]