I have a dataframe with id variable as Toy and the different color schemes Toy comes in -
input_data = pd.DataFrame({'Toy': ['Toy1', 'Toy2', 'Toy3','Toy4'],
'Color1': ['Red', 'Orange', '', 'Orange'],
'Color2': ['Red', '', 'Blue', 'Red']})
I want to one-hot encode the Color1 and Color2 variables, but have one single transformed variable (color name without any prefix)
output_data = pd.DataFrame({'Toy': ['Toy1', 'Toy2', 'Toy3', 'Toy4'],
'Red': [1, 0, 0, 1],
'Blue': [0, 0, 1, 0],
'Orange': [0, 1, 0, 1]})
This seems to be a quick and easy output but I am not able to find a straight forward way of doing it. Any leads are really appreciated.
CodePudding user response:
Use Series.str.get_dummies
with joine values by |
:
df = input_data.set_index('Toy').agg('|'.join, 1).str.get_dummies().reset_index()
print (df)
Toy Blue Orange Red
0 Toy1 0 0 1
1 Toy2 0 1 0
2 Toy3 1 0 0
3 Toy4 0 1 1
CodePudding user response:
I don't think there is a direct option. You could reshape and use crosstab
:
d = input_data.replace('', float('nan')).melt(id_vars='Toy')
out = (pd.crosstab(d['Toy'],d['value'])
.clip(upper=1)
.reset_index().rename_axis(index=None, columns=None)
)
output:
Toy Blue Orange Red
0 Toy1 0 0 1
1 Toy2 0 1 0
2 Toy3 1 0 0
3 Toy4 0 1 1