The dataframe would look something similar to this:
start = [0,2,4,5,1]
end = [3,5,5,5,2]
df = pd.DataFrame({'start': start,'end': end})
The result I want look something like this: Basically marking a value from start to finish across multiple columns. So if one that start on 0 and ends on 3 I want to mark new column 0 to 3 with a value(1) and the rest with 0.
start = [0,2,4,5,1]
end = [3,5,5,5,2]
diff = [3,3,1,0,1]
col_0 = [1,0,0,0,0]
col_1=[1,0,0,0,1]
col_2 = [1,1,0,0,1]
col_3=[1,1,0,0,0]
col_4=[0,1,1,0,0]
col_5=[0,1,1,1,0]
df = pd.DataFrame({'start': start,'end': end, 'col_0':col_0, 'col_1': col_1, 'col_2': col_2, 'col_3':col_3, 'col_4': col_4, 'col_5': col_5})
start end col_0 col_1 col_2 col_3 col_4 col_5
0 3 1 1 1 1 0 0
2 5 0 0 1 1 1 1
4 5 0 0 0 0 1 1
5 5 0 0 0 0 0 1
1 2 0 1 1 0 0 0
CodePudding user response:
Convert your range from start
to stop
to a list of indices then explode it. Finally, use indexing to set values to 1:
import numpy as np
range_to_ind = lambda x: range(x['start'], x['end'] 1)
(i, j) = df.apply(range_to_ind, axis=1).explode().astype(int).reset_index().values.T
a = np.zeros((df.shape[0], max(df['end']) 1), dtype=int)
a[i, j] = 1
df = df.join(pd.DataFrame(a).add_prefix('col_'))
Output:
>>> df
start end col_0 col_1 col_2 col_3 col_4 col_5
0 0 3 1 1 1 1 0 0
1 2 5 0 0 1 1 1 1
2 4 5 0 0 0 0 1 1
3 5 5 0 0 0 0 0 1
4 1 2 0 1 1 0 0 0
CodePudding user response:
Use dict.fromkeys
in list comprehension for each row in DataFrame
and pass to DataFrame constructor if perfromance is important:
L = [dict.fromkeys(range(s, e 1), 1) for s, e in zip(df['start'], df['end'])]
df = df.join(pd.DataFrame(L, index=df.index).add_prefix('col_').fillna(0).astype(int))
print (df)
start end col_0 col_1 col_2 col_3 col_4 col_5
0 0 3 1 1 1 1 0 0
1 2 5 0 0 1 1 1 1
2 4 5 0 0 0 0 1 1
3 5 5 0 0 0 0 0 1
4 1 2 0 1 1 0 0 0
If possible some range value is missing like in changed sample data add DataFrame.reindex
:
#missing column 6
start = [0,2,4,7,1]
end = [3,5,5,8,2]
df = pd.DataFrame({'start': start,'end': end})
L = [dict.fromkeys(range(s, e 1), 1) for s, e in zip(df['start'], df['end'])]
df1 = (pd.DataFrame(L, index=df.index)
.reindex(columns=range(df['start'].min(), df['end'].max() 1), fill_value=0)
.add_prefix('col_')
.fillna(0)
.astype(int))
df = df.join(df1)
print (df)
start end col_0 col_1 col_2 col_3 col_4 col_5 col_6 col_7 col_8
0 0 3 1 1 1 1 0 0 0 0 0
1 2 5 0 0 1 1 1 1 0 0 0
2 4 5 0 0 0 0 1 1 0 0 0
3 7 8 0 0 0 0 0 0 0 1 1
4 1 2 0 1 1 0 0 0 0 0 0