Home > Mobile >  Dataframes from .data, .names and .test files using pandas
Dataframes from .data, .names and .test files using pandas

Time:03-15

I am trying to work on the adult dataset, available at this link.

At the moment I'm stuck since the data I am able to crawl are in formats which are not completely known to me. Therefore, after downloading the files, I am not able to correcly get a pandas dataframe with the downloaded files.

I am able to download 3 files from UCI using the following links:

data = 'https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data'  
names = 'https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names'
test = 'https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.test'

They are respectively of formats .data, .names and .test. I have always worked using .csv format, therefore I am a little confused about these ones.

How can I get a pandas dataframe with the train data (= data names) and a pandas dataframe with the test data (= test names)?

This code won't completely work:

train_df = pd.read_csv(r'./adult.data', header=None)
train_df.head()  # WORKING (without column names)

df_names = df = pd.read_csv(r'./adult.names')
df_names.head()  # ERROR

test_df = pd.read_csv(r'./adult.test')
test_df.head()  # ERROR

CodePudding user response:

You achieve that using pandas like this:

import pandas as pd
# reading csv files
data =  pd.read_csv('adult.data', sep=",")
print(data)


names =  pd.read_csv('adult.names', sep="\t")
print(names)

test =  pd.read_csv('adult.test', sep="\t")
print(test)

CodePudding user response:

Use:

import pandas as pd
import re

# adult.names
with open('adult.names') as fp:
    cols = []
    for line in fp:
        sre = re.match(r'(?P<colname>[a-z\-] ):.*\.', line)
        if sre:
            cols.append(sre.group('colname'))
    cols.append('label')

# Python > 3.8, walrus operator
# with open('adult.names') as fp:
#     cols = [sre.group('colname') for line in fp
#                 if (sre := re.match(r'(?P<colname>[a-z\-] ):.*\.', line))]
#     cols.append('label')

options = {'header': None, 'names': cols, 'skipinitialspace': True}

# adult.data
train_df = pd.read_csv('adult.data', **options)

# adult.test
test_df = pd.read_csv('adult.test', skiprows=1, **options)
test_df['label'] = test_df['label'].str.rstrip('.')
  • Related