Because of the need to build the knowledge graph, I wanted to convert a 3.39GB XML data file to CSV format, but when I tried Python, my computer ran out of memory.
The following code:
import glob
import pandas as pd
import xml.etree.ElementTree as ET
import os
def xml_to_csv(path):
xml_list = []
for xml_file in glob.glob(path '/Badges.xml'):
print('**********************************')
print(xml_file)
tree = ET.parse(xml_file)
root = tree.getroot()
# for member in root.findall('row'):
for member in root.findall('row'):
value = (member.attrib.get('Id', ''),
member.attrib.get('UserId', ''),
member.attrib.get('Name', ''),
member.attrib.get('Date', ''),
member.attrib.get('Class', ''),
member.attrib.get('TagBased', ''),
)
xml_list.append(value)
column_name = ['Id', 'UserId', 'Name', 'Date', 'Class','TagBased']
xml_df = pd.DataFrame(xml_list, columns = column_name)
# print('----------------')
# print(xml_df)
return xml_df
if __name__ == "__main__":
xml_path = 'D:/【论文】/【数据集】/1-StackOverflow数据集-2008-2021/stackoverflow.com-Badges'
print(os.path.exists(xml_path))
xml_df = xml_to_csv(xml_path)
print('**********************************')
print(xml_df)
xml_df.to_csv('D:/【论文】/【数据集】/1-StackOverflow数据集-2008-2021/stackoverflow.com-Badges/Badges.csv', index = None)
print('Successfully converted xml to csv.')
CodePudding user response:
There are various technologies for streamed processing of XML. One of them is XSLT 3.0, where you would write
<xsl:mode streamable="yes"/>
<xsl:output method="text"/>
<xsl:template match="row">
<xsl:value-of select="@Id, @UserId, @Name, @Class, @TagBased"
separator=","/>
<xsl:text>
</xsl:text>
</xsl:template>
CodePudding user response:
You can use ET.iterparse()
to parse a large XML file in "streaming" mode, without loading all of it into memory first.
Iterparse lets you react to events as they occur while reading the file: start
happens when a start tag (e.g <row Id="..." UserId="...">
) was read, end
happens when an end tag (e.g. </row>
) was read. There are more events for more specialized tasks.
For reading out attribute values, listening to start
events is good enough. Simple example:
import xml.etree.ElementTree as ET
def parse_rows(xml_path):
for event, elem in ET.iterparse(xml_path, ['start']):
if elem.tag == 'row':
yield (
elem.attrib.get('Id', ''),
elem.attrib.get('UserId', ''),
elem.attrib.get('Name', ''),
elem.attrib.get('Date', ''),
elem.attrib.get('Class', ''),
elem.attrib.get('TagBased', ''),
)
elem.clear()
for row in parse_rows(path '/Badges.xml')
print(row)
parse_rows()
is a generator. You should be able to fill a dataframe directly from it, without building a temporary xml_list
first.
df = pd.DataFrame(parse_rows(path '/Badges.xml'))