I need a bit of help with python. Here is what I want to achieve.
I have a dataset that looks like below:
import pandas as pd
# define data
data = {'A': [55, "g", 35, 10,'pj'], 'B': [454, 27, 895, 3545,34],
'C': [4, 786, 7, 3, 896],
'Phone Number': [123456789, 7, 3456789012, 4567890123, 1],'another_col':[None,234567890,None,None,215478565]}
pd.DataFrame(data)
A B C Phone Number another_col
0 55 454 4 123456789 None
1 g 27 786 7 234567890.0
2 35 895 7 3456789012 None
3 10 3545 3 4567890123 None
4 pj 34 896 1 215478565.0
I have extracted this data from pdf and unfortunately it adds some random strings as shown above in the dataframe. I want to check if any of the cells in any of the columns contain strings or none-numeric value. If so, then delete the string and shift the entire row to the left. Finally, the desired output is as shown below:
A B C Phone Number another_col
0 55 454 4 1.234568e 08 None
1 27 786 7 2.345679e 08 None
2 35 895 7 3.456789e 09 None
3 10 3545 3 4.567890e 09 None
4 34 896 1 2.15478565 8 None
I would really appreciate your help.
CodePudding user response:
One way is to use to_numeric
to coerce each value to numeric values, then shifting each row leftward using dropna
:
out = (df.apply(pd.to_numeric, errors='coerce')
.apply(lambda x: pd.Series(x.dropna().tolist(), index=df.columns.drop('another_col')), axis=1))
Output:
A B C Phone Number
0 55.0 454.0 4.0 1.234568e 08
1 27.0 786.0 7.0 2.345679e 08
2 35.0 895.0 7.0 3.456789e 09
3 10.0 3545.0 3.0 4.567890e 09
4 34.0 896.0 1.0 2.154786e 08
CodePudding user response:
You can create boolean mask, shift
and pd.concat
:
m=pd.to_numeric(df['A'], errors='coerce').isna()
pd.concat([df.loc[~m], df.loc[m].shift(-1, axis=1)]).sort_index()
Output:
A B C Phone Number another_col
0 55 454 4 1.234568e 08 NaN
1 27 786 7 2.345679e 08 NaN
2 35 895 7 3.456789e 09 NaN
3 10 3545 3 4.567890e 09 NaN
4 34 896 1 2.154786e 08 NaN