I have my 'cost_money'
column like this,
0 According to different hospitals, the charging...
1 According to different hospitals, the charging...
2 According to different conditions, different h...
3 According to different hospitals, the charging...
Name: cost_money, dtype: object
Out of which each string has some important data in brackets, which I need to extract.
"According to different hospitals, the charging standard is inconsistent, the city's three hospitals is about (1000-4000 yuan)"
My try for this is,
import regex as re
full_df['cost_money'] = full_df.cost_money.str.extract('\((.*?)\')
full_df
But this gives an error between string and int conversion, I guess. This a whole string and if I print any character it is going to be char
type.
Other than that, I don't need 'yuan' word from the brackets so my method to extract the numbers directly was
import regex as re
df['cost_money'].apply(lambda x: re.findall(r"[- ]?\d*\.\d |\d ", x)).tolist()
full_df['cost_money']
Error:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
c:\Users\Siddhi\HealthcareChatbot\eda.ipynb Cell 11' in <module>
1 import regex as re
----> 2 df['cost_money'].apply(lambda x: re.findall(r"[- ]?\d*\.\d |\d ", x)).tolist()
3 full_df['cost_money']
File c:\Users\Siddhi\HealthcareChatbot\venv\lib\site-packages\pandas\core\series.py:4433, in Series.apply(self, func, convert_dtype, args, **kwargs)
4323 def apply(
4324 self,
4325 func: AggFuncType,
(...)
4328 **kwargs,
4329 ) -> DataFrame | Series:
4330 """
4331 Invoke function on values of Series.
4332
(...)
4431 dtype: float64
4432 """
-> 4433 return SeriesApply(self, func, convert_dtype, args, kwargs).apply()
File c:\Users\Siddhi\HealthcareChatbot\venv\lib\site-packages\pandas\core\apply.py:1082, in SeriesApply.apply(self)
1078 if isinstance(self.f, str):
1079 # if we are a string, try to dispatch
1080 return self.apply_str()
-> 1082 return self.apply_standard()
File c:\Users\Siddhi\HealthcareChatbot\venv\lib\site-packages\pandas\core\apply.py:1137, in SeriesApply.apply_standard(self)
1131 values = obj.astype(object)._values
1132 # error: Argument 2 to "map_infer" has incompatible type
1133 # "Union[Callable[..., Any], str, List[Union[Callable[..., Any], str]],
1134 # Dict[Hashable, Union[Union[Callable[..., Any], str],
1135 # List[Union[Callable[..., Any], str]]]]]"; expected
1136 # "Callable[[Any], Any]"
-> 1137 mapped = lib.map_infer(
1138 values,
1139 f, # type: ignore[arg-type]
1140 convert=self.convert_dtype,
1141 )
1143 if len(mapped) and isinstance(mapped[0], ABCSeries):
1144 # GH#43986 Need to do list(mapped) in order to get treated as nested
1145 # See also GH#25959 regarding EA support
1146 return obj._constructor_expanddim(list(mapped), index=obj.index)
File c:\Users\Siddhi\HealthcareChatbot\venv\lib\site-packages\pandas\_libs\lib.pyx:2870, in pandas._libs.lib.map_infer()
c:\Users\Siddhi\HealthcareChatbot\eda.ipynb Cell 11' in <lambda>(x)
1 import regex as re
----> 2 df['cost_money'].apply(lambda x: re.findall(r"[- ]?\d*\.\d |\d ", x)).tolist()
3 full_df['cost_money']
File c:\Users\Siddhi\HealthcareChatbot\venv\lib\site-packages\regex\regex.py:338, in findall(pattern, string, flags, pos, endpos, overlapped, concurrent, timeout, ignore_unused, **kwargs)
333 """Return a list of all matches in the string. The matches may be overlapped
334 if overlapped is True. If one or more groups are present in the pattern,
335 return a list of groups; this will be a list of tuples if the pattern has
336 more than one group. Empty matches are included in the result."""
337 pat = _compile(pattern, flags, ignore_unused, kwargs, True)
--> 338 return pat.findall(string, pos, endpos, overlapped, concurrent, timeout)
TypeError: expected string or buffer
I tried the same thing using findall
but most posts mentioned using extract so I stuck to that.
MY REQUESTED OUTPUT:
[5000, 8000]
[6000, 7990]
..SO ON
Can somebody please help me out? Thanks
CodePudding user response:
You can use (\d*-\d*)
to match the number part and then split on -
.
df['money'] = df['cost_money'].str.extract('\((\d*-\d*).*\)')
df['money'] = df['money'].str.split('-')
Or use (\d*)[^\d]*(\d*)
to match the two number parts seperately
df['money'] = df['cost_money'].str.extract('\((\d*)[^\d]*(\d*).*\)').values.tolist()
CodePudding user response:
I believe your regex was incorrect. Here are alternatives.
Example input:
df = pd.DataFrame({'cost_money': ['random text (123-456 yuans)',
'other example (789 yuans)']})
Option A:
df['cost_money'].str.extract('\((\d -\d )', expand=False)
Option B (allow single cost):
df['cost_money'].str.extract('\((\d (?:-\d )?)', expand=False)
Option C (all numbers eater the first '(' as list:
df['cost_money'].str.split('[()]').str[1].str.findall('(\d )')
Output (assigned as new columns):
cost_money A B C
0 random text (123-456 yuans) 123-456 123-456 [123, 456]
1 other example (789 yuans) NaN 789 [789]