I have a dataframe that looks like this:
tt1 <- structure(list(sjlid = c("SJL1527107", "SJL1527107", "SJL1527107",
"SJL1527107", "SJL1527107"), condition = c("Abnormal_glucose_metabolism",
"Abnormal_glucose_metabolism", "Abnormal_glucose_metabolism",
"Abnormal_glucose_metabolism", "Abnormal_glucose_metabolism"),
grade = c(NA, NA, NA, NA, NA), ageevent = c(58.8352421588442,
62.1366120218579, 64.4872969533648, 68.9694887341867, 70.9612695561045
)), row.names = 72:76, class = "data.frame")
I need to run this code:
library(dplyr)
tt1 %>% group_by(condition) %>% top_n(1, grade) %>% top_n(1, ageevent)
This code works when there are multiple rows (like tt1), but if there are only one row (like tt2
below), it just fails to give that particular row. For example, if I have my dataframe like this:
tt2 <- structure(list(sjlid = "SJL1527107", condition = "Abnormal_glucose_metabolism",
grade = NA, ageevent = 58.8352421588442), row.names = 72L, class = "data.frame")
tt2 %>% group_by(condition) %>% top_n(1, grade) %>% top_n(1, ageevent)
returns nothing
# A tibble: 0 x 4
# Groups: condition [0]
# ... with 4 variables: sjlid <chr>, condition <chr>, grade <lgl>, ageevent <dbl>
Instead, I want it to return this row because it's the only row there.
sjlid condition grade ageevent
72 SJL1527107 Abnormal_glucose_metabolism NA 58.8352421588442
CodePudding user response:
slice_max
can be used -top_n
is kind of deprecated in favor of slice
library(dplyr)
tt1 %>%
group_by(condition) %>%
slice_max(n = 1, order_by = ageevent) %>%
ungroup
-output
# A tibble: 1 × 4
sjlid condition grade ageevent
<chr> <chr> <lgl> <dbl>
1 SJL1527107 Abnormal_glucose_metabolism NA 71.0
It also works with tt2
(if both columns needs to be considered)
tt2 %>%
group_by(condition) %>%
slice_max(n = 1, order_by = pmax(ageevent, grade, na.rm = TRUE) ) %>%
ungroup
# A tibble: 1 × 4
sjlid condition grade ageevent
<chr> <chr> <lgl> <dbl>
1 SJL1527107 Abnormal_glucose_metabolism NA 58.8
If we need to prioritize, an option is also with arrange
tt2 %>%
arrange(condition, desc(ageevent), desc(grade)) %>%
distinct(condition, .keep_all = TRUE)
For the top_n
, we can use
tt2 %>%
group_by(condition) %>%
top_n(pmax(grade, ageevent, na.rm = TRUE)) %>%
ungroup
Selecting by ageevent
# A tibble: 1 × 4
sjlid condition grade ageevent
<chr> <chr> <lgl> <dbl>
1 SJL1527107 Abnormal_glucose_metabolism NA 58.8