I have a dataset like:
New_ID application_start_date is_approved
1234 2022-03-29 1
2345 2022-01-29 1
1234 2021-02-28 0
567 2019-07-03 1
567 2018-09-01 0
And I want to create new attributes N_App_3M
which would be sum of is_approved
to that application_start_date
within 3 month time frame.
Expected output would be:
New_ID application_start_date is_approved N_App_3M
1234 2022-03-29 1 2
2345 2022-01-29 0 0
1234 2022-02-28 1 1
567 2019-07-03 1 1
567 2018-09-01 0 0
CodePudding user response:
Compute the rolling 3-month and 7-day sums and then use pd.merge_asof
to generate your columns:
df["application_start_date"] = pd.to_datetime(df["application_start_date"])
df = df.set_index("application_start_date").sort_index()
app_3M = df.resample("M")["is_approved"].sum().rolling(3).sum().rename("N_App_3M").fillna(0)
app_7D = df.rolling("7D")["is_approved"].sum().rename("N_App_7D").fillna(0)
output = pd.merge_asof(df,app_3M,direction="nearest",left_index=True,right_index=True)
output = pd.merge_asof(output,app_7D,direction="nearest",left_index=True,right_index=True)
>>> output
New_ID is_approved N_App_3M N_App_7D
application_start_date
2018-09-01 567 0 0.0 0.0
2019-07-03 567 1 0.0 1.0
2021-02-28 1234 0 0.0 0.0
2022-01-29 2345 1 1.0 1.0
2022-03-29 1234 1 2.0 1.0