this is not a very good title for the question. I want to sum across certain columns in a data frame for each group, excluding one column for each of my groups. A simple example would be as follows:
df <- tibble(group_name = c("A", "B","C"), mean_A = c(1,2,3), mean_B = c(2,3,4), mean_C=c(3,4,5))
df %>% group_by(group_name) %>% mutate(m1 = sum(across(contains("mean"))))
This creates column m1, which is the sum across mean_a, mean_b, mean_c for each group. What I want to do is exclude mean_a for group a, mean_b for b and mean_c for c. The following does not work though (not surprisingly).
df %>% group_by(group_name) %>% mutate(m1 = sum(across(c(contains("mean") & !contains(group_name)))))
Do you have an idea how I could do this? My original data contains many more groups, so would be hard to do by hand.
Edit: I have tried the following way which solves it in a rudimentary fashion, but something (?grepl maybe) seems to not work great here and I get the wrong result.
df %>% pivot_longer(!group_name) %>% mutate(value2 = case_when(grepl(group_name, name) ~ 0, TRUE ~ value)) %>% group_by(group_name) %>% summarise(m1 = sum(value2))
Edit2: Found out what's wrong with the above, and below works, but still a lot of warnings so I recommend people to follow TarJae's response below
df %>% pivot_longer(!group_name) %>% group_by(group_name) %>% mutate(value2 = case_when(grepl(group_name, name) ~ 0, TRUE ~ value)) %>% group_by(group_name) %>% summarise(m1 = sum(value2))
CodePudding user response:
Here is one way how we could do it:
- We create a helper column to match column names
- We set value of mean column to zeor if column names matches helper name.
- Then we use
transmute
withselect
to calculaterowSums
- Finally we
cbind
columnm1
todf
:
library(dplyr)
df %>%
mutate(helper = paste0("mean_", group_name)) %>%
mutate(across(starts_with("mean"), ~ifelse(cur_column()==helper, 0, .))) %>%
transmute(m1 = select(., contains("mean")) %>%
rowSums()) %>%
cbind(df)
m1 group_name mean_a mean_b mean_c
1 5 a 1 2 3
2 6 b 2 3 4
3 7 c 3 4 5