for dataframe below,
df <- data.frame(id = c(rep(101, 4), rep(202, 3)),
status = c("a","b","c","d", "a", "b", "c"),
wt = c(100,200,100,105, 20,22,25),
ht = c(5.3,5.2,5,5.1, 4.3,4.2,4.1))
df
id status wt ht
1 101 a 100 5.3
2 101 b 200 5.2
3 101 c 100 5.0
4 101 d 105 5.1
5 202 a 20 4.3
6 202 b 22 4.2
7 202 c 25 4.1
I want to get output below:
> output
id status wt ht
1 101 a 100 5.3
2 101 b 200 5.2
3 101 c 100 5.0
4 101 d 105 5.1
5 101 sum 505 20.6
6 202 a 20 4.3
7 202 b 22 4.2
8 202 c 25 4.1
9 202 sum 67 12.6
df is coming from a sequence of pipes and I do not want to stop it and do something like
output <- rbind(df[1:4,],
c(101, "sum", colSums(df[1:4, c(3,4)])),
df[5:7,],
c(202, "sum", colSums(df[5:7, c(3,4)])))
I am looking for a neat , good looking! way of achieving this. Any help or idea is so appreciated.
df %>%
....
CodePudding user response:
We may use adorn_totals
after grouping by 'id'.
library(dplyr)
library(janitor)
df %>%
group_by(id) %>%
group_modify(~ .x %>%
adorn_totals(cols = c(wt, ht), name = 'sum')) %>%
ungroup
-output
# A tibble: 9 × 4
id status wt ht
<dbl> <chr> <dbl> <dbl>
1 101 a 100 5.3
2 101 b 200 5.2
3 101 c 100 5
4 101 d 105 5.1
5 101 sum 505 20.6
6 202 a 20 4.3
7 202 b 22 4.2
8 202 c 25 4.1
9 202 sum 67 12.6
CodePudding user response:
With tibble::add_row
, a bit more flexible:
library(tidyverse)
df %>%
group_by(id) %>%
group_modify(~ .x %>% add_row(status = "sum", wt = sum(.$wt), ht = sum(.$ht)))
# A tibble: 9 × 4
# Groups: id [2]
id status wt ht
<dbl> <chr> <dbl> <dbl>
1 101 a 100 5.3
2 101 b 200 5.2
3 101 c 100 5
4 101 d 105 5.1
5 101 sum 505 20.6
6 202 a 20 4.3
7 202 b 22 4.2
8 202 c 25 4.1
9 202 sum 67 12.6
CodePudding user response:
Another possible solution, based on colSums
and dplyr
:
library(dplyr)
df %>%
group_by(id) %>%
group_modify(~ add_row(.x, status = "Sum", !!!colSums(.[2:3]))) %>%
ungroup
#> # A tibble: 9 × 4
#> id status wt ht
#> <dbl> <chr> <dbl> <dbl>
#> 1 101 a 100 5.3
#> 2 101 b 200 5.2
#> 3 101 c 100 5
#> 4 101 d 105 5.1
#> 5 101 Sum 505 20.6
#> 6 202 a 20 4.3
#> 7 202 b 22 4.2
#> 8 202 c 25 4.1
#> 9 202 Sum 67 12.6