Home > Mobile >  Condition on two and more subsequent pandas rows (not just grouped calculations)
Condition on two and more subsequent pandas rows (not just grouped calculations)

Time:05-17

I have df with student's name, his/her score, class title, and date of exam. I need to add a column as shown on the picture which will denote if a student's grade improved or not (3-4 conditional marks like "score increased", "score decreased", "equal", or "initial grade"). I have sorted df according to this now need to compare some conditions in row and next one and if all true should return a mark. Is there an effective way to do this (my actual table will consist of 1m rows that's why it shouldn't be memory consuming)? Thank you in advance?

df=pd.DataFrame({"score":[10,20,15,10,20,30],
                   "student":['John', 'Alex', "John", "John", "Alex", "John"],
                   "class":['english', 'math', "english",'math','math', 'english'],
                 "date":['01/01/2022','02/01/2022', '05/01/2022', '17/02/2022', '02/01/2022', '03/01/2022']})

df=df.sort_values(['student','class', 'date'])

enter image description here

CodePudding user response:

Get the change in scores using groupby and diff() and then assign the values using numpy.select:

import numpy as np

changes = df.groupby(["student","class"], sort=False)["score"].diff()
df["progress"] = np.select([changes.eq(0),changes.gt(0),changes.lt(0)],
                           ["equal score","score increased","score decreased"], 
                           "initial")

>>> df
   score student    class        date         progress
1     20    Alex     math  02/01/2022          initial
4     20    Alex     math  02/01/2022      equal score
0     10    John  english  01/01/2022          initial
5     30    John  english  03/01/2022  score increased
2     15    John  english  05/01/2022  score decreased
3     10    John     math  17/02/2022          initial

CodePudding user response:

You can use a groupby.diff to compute the difference, then numpy.sign to get the sign and map the texts you want. Use fillna for the default ("initial"):

df['progress'] = (np.sign(df.groupby(['student', 'class'])
                            ['score'].diff())
                    .map({0: 'equal', 1: 'increases', -1: 'decreases'})
                    .fillna('initial')
                  )

Output:

   score student    class        date   progress
1     20    Alex     math  02/01/2022    initial
4     20    Alex     math  02/01/2022      equal
0     10    John  english  01/01/2022    initial
5     30    John  english  03/01/2022  increases
2     15    John  english  05/01/2022  decreases
3     10    John     math  17/02/2022    initial

CodePudding user response:

This is a progressive approach I used

df['RN'] = df.sort_values(['date'], ascending=[True]).groupby(['student', 'class']).cumcount()   1
#df.sort_values(['student', 'RN']) #To visually see progress of student before changes
df['Progress'] = df['RN'].apply(lambda x : str(x).replace('1', 'initial'))
df = df.sort_values(['student', 'RN'])
df['score_shift'] = df['score'].shift()
df['score_shift'].fillna(0, inplace = True)
df['score_shift'] = df['score_shift'].astype(int)
condlist = [df['Progress'] == 'initial', df['score_shift'] == df['score'], df['score_shift'] > df['score'], df['score_shift'] < df['score']]
choicelist = ['initial', 'equal', 'decrease', 'increase']
df['Progress'] = np.select(condlist, choicelist)
df
  • Related