I have this huge data frame with very long column names
import pandas as pd
df = pd.DataFrame({'mynumber': [11, 20, 25],
'Raja_trial1:gill234_pit_type_id@rng': [4, 5, 42],
'Raja_trial1:Perm_king_que@pmcx[x1]': [0, 2, 3],
'Dun_mere_fer45:Hisota_gul_har23@cyu[9]': [4, 5, 42],
'Pit_chb1:reet_kaam_nix@opdx[x1]': [2, 1, 1],
})
and I would like to rename some of the columns like below dataframe.
outputdf = pd.DataFrame({'mynumber': [11, 20, 25],
'trial1:type_id': [4, 5, 42],
'trial1:king_que': [0, 2, 3],
'fere45:gul_har23': [4, 5, 42],
'chb1:kaam_nix': [2, 1, 1],
})
CodePudding user response:
You can achieve this with a single regex:
df.columns = df.columns.str.replace(r'.*?([^_] :). ?([^_] _[^_] )@.*',
r'\1\2', regex=True)
output:
mynumber trial1:type_id trial1:king_que fer45:gul_har23 chb1:kaam_nix
0 11 4 0 4 2
1 20 5 2 5 1
2 25 42 3 42 1
To understand ho this works, you can check the regex demo.
CodePudding user response:
You can try split the column names
import re
def rename(col):
a, b, _, = re.split(':|@', col)
return a.split('_')[-1] ':' '_'.join(b.split('_')[-2:])
df.columns = df.columns[0:1].tolist() [rename(col) for col in df.columns[1:]]
CodePudding user response:
using rename
?:
df.rename(columns ={
'Raja_trial1:gill234_pit_type_id@rng':'trial1:type_id',
'Raja_trial1:Perm_king_que@pmcx[x1]':'trial1:king_que',
'Dun_mere_fer45:Hisota_gul_har23@cyu[9]':'fere45:gul_har23',
'Pit_chb1:reet_kaam_nix@opdx[x1]':'chb1:kaam_nix'
},inplace=True)