I'm trying to perform an autocorrelation plot in ggplot2
.
library(nlme)
fm2 <- lme(distance ~ age Sex, data = Orthodont, random = ~ 1)
plot(ACF(fm2,resType="normalized"),alpha=0.05)
Result through the above function:
########################## IC ###########################
ic_alpha= function(alpha, acf_res){
return(qnorm((1 (1 - alpha))/2)/sqrt(acf_res$n.used))
}
#################### graphics ###########################
library(ggplot2)
ggplot_acf_pacf= function(res_, lag, label, alpha= 0.05){
df_= with(res_, data.frame(lag, ACF))
lim1= ic_alpha(alpha, res_)
lim0= -lim1
ggplot(data = df_, mapping = aes(x = lag, y = ACF))
geom_hline(aes(yintercept = 0))
geom_segment(mapping = aes(xend = lag, yend = 0))
labs(y= label)
geom_hline(aes(yintercept = lim1), linetype = 2, color = 'blue')
geom_hline(aes(yintercept = lim0), linetype = 2, color = 'blue')
}
######################## result ########################
acf_ts = ggplot_acf_pacf(res_= ACF(fm2,resType="normalized"),
20,
label= "ACF")
However, I am encountering the following error:
Error in sqrt(acf_res$n.used) :
non-numeric argument to mathematical function
What I intend to get is something like:
CodePudding user response:
The object produced by ACF
does not have a member called n.used
. It has an attribute called n.used
. So your ic_alpha
function should be:
ic_alpha <- function(alpha, acf_res) {
return(qnorm((1 (1 - alpha)) / 2) / sqrt(attr(acf_res, "n.used")))
}
Another problem is that, since ic_alpha
returns a vector, you will not have a single pair of significance lines, but rather one pair for each lag, which looks messy. Instead, emulating the base R plotting method, we can use geom_line
to get a single curving pair.
ggplot_acf_pacf <- function(res_, lag, label, alpha = 0.05) {
df_ <- with(res_, data.frame(lag, ACF))
lim1 <- ic_alpha(alpha, res_)
lim0 <- -lim1
ggplot(data = df_, mapping = aes(x = lag, y = ACF))
geom_hline(aes(yintercept = 0))
geom_segment(mapping = aes(xend = lag, yend = 0))
labs(y= label)
geom_line(aes(y = lim1), linetype = 2, color = 'blue')
geom_line(aes(y = lim0), linetype = 2, color = 'blue')
theme_gray(base_size = 16)
}
Which results in:
ggplot_acf_pacf(res_ = ACF(fm2, resType = "normalized"), 20, label = "ACF")