Home > Mobile >  Python: How to subtract value from subselection of cells in a pandas DataFrame IN PLACE?
Python: How to subtract value from subselection of cells in a pandas DataFrame IN PLACE?

Time:06-02

I try to subtract a value (50) from a subselection of cells in a pandas DataFrame. I want to subtract the value from ‘rt’ where subj == 1 and cond == std. I would like to perform this calculation in place so that the other values stay untouched.

Lets say I have the following DataFrame:

data = {'subj': [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,],
        'rt': [100, 102, 101, 100, 101, 101, 105, 105, 106, 104, 104, 106],
        'cond':['nov', 'std', 'std', 'emo', 'std', 'emo', 'nov', 'std', 'std',
                'emo', 'std', 'emo']} 
df = pd.DataFrame(data)

       subj rt cond
0      1  100  nov
1      1  102  std
2      1  101  std
3      1  100  emo
4      1  101  std
5      1  101  emo
6      2  105  nov
7      2  105  std
8      2  106  std
9      2  104  emo
10     2  104  std
11     2  106  emo

Now I want to subtract the the value 50 from the 'rt' that meet the criteria subj == 1 and cond == std. I am using the following code to subtract the value.

df['rt'] = df[(df['subj'] == 1) & (df['cond'] == 'std')]['rt'].subtract(50)

This is, what I am expecting:

       subj rt cond
0      1  100  nov
1      1   52  std
2      1   51  std
3      1  100  emo
4      1   51  std
5      1  101  emo
6      2  105  nov
7      2  105  std
8      2  106  std
9      2  104  emo
10     2  104  std
11     2  106  emo

Instead this is what i get:

       subj rt cond
0      1  NaN  nov
1      1  2.0  std
2      1  1.0  std
3      1  NaN  emo
4      1  1.0  std
5      1  NaN  emo
6      2  NaN  nov
7      2  NaN  std
8      2  NaN  std
9      2  NaN  emo
10     2  NaN  std
11     2  NaN  emo

How can I keep the remaining values of the rt column instead of having NaN? I want to subtract the other rt values by other values in the same manner without creating separate DataFrames for each condition.

CodePudding user response:

This can be accomplished using np.where()

import pandas as pd
import numpy as np
data = {'subj': [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,],
        'rt': [100, 102, 101, 100, 101, 101, 105, 105, 106, 104, 104, 106],
        'cond':['nov', 'std', 'std', 'emo', 'std', 'emo', 'nov', 'std', 'std',
                'emo', 'std', 'emo']} 
df = pd.DataFrame(data)
df['rt'] = np.where((df['subj'] == 1) & (df['cond'] == 'std'), df['rt'].sub(50), df['rt'])
df

CodePudding user response:

Use slicing with loc to do it in place efficiently (only the 3 matching values will be computed):

df.loc[df['subj'].eq(1)&df['cond'].eq('std'), 'rt'] -= 50

output:

    subj   rt cond
0      1  100  nov
1      1   52  std
2      1   51  std
3      1  100  emo
4      1   51  std
5      1  101  emo
6      2  105  nov
7      2  105  std
8      2  106  std
9      2  104  emo
10     2  104  std
11     2  106  emo

CodePudding user response:

I tried using df.loc as below and it worked:

df.loc[(df['subj']==1) & (df['cond']=='std'),'rt'] = df['rt'].subtract(50)
  • Related