I try to subtract a value (50) from a subselection of cells in a pandas DataFrame. I want to subtract the value from ‘rt’ where subj == 1 and cond == std. I would like to perform this calculation in place so that the other values stay untouched.
Lets say I have the following DataFrame:
data = {'subj': [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,],
'rt': [100, 102, 101, 100, 101, 101, 105, 105, 106, 104, 104, 106],
'cond':['nov', 'std', 'std', 'emo', 'std', 'emo', 'nov', 'std', 'std',
'emo', 'std', 'emo']}
df = pd.DataFrame(data)
subj rt cond
0 1 100 nov
1 1 102 std
2 1 101 std
3 1 100 emo
4 1 101 std
5 1 101 emo
6 2 105 nov
7 2 105 std
8 2 106 std
9 2 104 emo
10 2 104 std
11 2 106 emo
Now I want to subtract the the value 50 from the 'rt' that meet the criteria subj == 1 and cond == std. I am using the following code to subtract the value.
df['rt'] = df[(df['subj'] == 1) & (df['cond'] == 'std')]['rt'].subtract(50)
This is, what I am expecting:
subj rt cond
0 1 100 nov
1 1 52 std
2 1 51 std
3 1 100 emo
4 1 51 std
5 1 101 emo
6 2 105 nov
7 2 105 std
8 2 106 std
9 2 104 emo
10 2 104 std
11 2 106 emo
Instead this is what i get:
subj rt cond
0 1 NaN nov
1 1 2.0 std
2 1 1.0 std
3 1 NaN emo
4 1 1.0 std
5 1 NaN emo
6 2 NaN nov
7 2 NaN std
8 2 NaN std
9 2 NaN emo
10 2 NaN std
11 2 NaN emo
How can I keep the remaining values of the rt column instead of having NaN? I want to subtract the other rt values by other values in the same manner without creating separate DataFrames for each condition.
CodePudding user response:
This can be accomplished using np.where()
import pandas as pd
import numpy as np
data = {'subj': [1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2,],
'rt': [100, 102, 101, 100, 101, 101, 105, 105, 106, 104, 104, 106],
'cond':['nov', 'std', 'std', 'emo', 'std', 'emo', 'nov', 'std', 'std',
'emo', 'std', 'emo']}
df = pd.DataFrame(data)
df['rt'] = np.where((df['subj'] == 1) & (df['cond'] == 'std'), df['rt'].sub(50), df['rt'])
df
CodePudding user response:
Use slicing with loc
to do it in place efficiently (only the 3 matching values will be computed):
df.loc[df['subj'].eq(1)&df['cond'].eq('std'), 'rt'] -= 50
output:
subj rt cond
0 1 100 nov
1 1 52 std
2 1 51 std
3 1 100 emo
4 1 51 std
5 1 101 emo
6 2 105 nov
7 2 105 std
8 2 106 std
9 2 104 emo
10 2 104 std
11 2 106 emo
CodePudding user response:
I tried using df.loc as below and it worked:
df.loc[(df['subj']==1) & (df['cond']=='std'),'rt'] = df['rt'].subtract(50)